MATH 261 - LINEAR ALGEBRA

FALL 1999 (EXAM 3)

(1) Give an example of an invertible linear transformation from \mathbb{R}^{3} into itself, other than the identity, which has a two-dimensional invariant subspace.
(2) a) Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a linear map, where $m<n$. Show that T is not surjective. b) Restate a) as a theorem about non-homogeneous linear systems of equations.
(3) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map given by $T(x, y)=(2 x+y, x-3 y)$. Let β be the canonical basis of \mathbb{R}^{2} and let $\beta^{\prime}=\{(1,1),(1,2)\}$. Use theorem 2.23 to find $[T]_{\beta^{\prime}}$.
(4) a) Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which consists in rotating counterclockwise around the origin by $\frac{\pi}{2}$. Write down the matrix of T relative to the canonical basis.
b) What are the invariant subspaces of T ?
(5) Let V be a finite dimensional vector space and W a proper subspace of V. Let a be in the complement of W in V. Show that there is a linear functional $v^{*} \in V^{*}$ such that $v^{*}(a)=1$ and $v^{*}(w)=0$ for all $w \in W$. Hint: complete a basis for $\mathcal{L}\{W, a\}$ to a basis of V and then consider its dual.

