MATH 261 - LINEAR ALGEBRA

FALL 1999 (FINAL EXAM)

(1) What linear relation(s) must $\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ satisfy in order for it to be in the range of $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}, T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}-x_{2}-4 x_{3}, 2 x_{2}+3 x_{3}, 3 x_{1}-2 x_{2}+x_{3}, 4 x_{1}+x_{2}-x_{3}\right)$?
(2) Show that \mathbb{R}^{2} has a basis β consisting of eigenvectors of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T(x, y)=(x+2 y, 2 x+y)$. Write down the matrix $[T]_{\beta}$.
(3) Show that similar linear maps $S, T: V \rightarrow V$ have the same nullity.
(4) Is there an injective linear transformation from the space of all $n \times n$ symmetric real matrices into $\mathbb{R}^{2 n}$? Justify your answer.
(5) Prove that two finite-dimensional vector spaces (over the same field) are isomorphic if and only if they have the same dimension.

