Math 261 - Linear Algebra Fall 2000 (Exam 1)

1. (15 points) Let $W_{1}=\left\{(a, b) \in \mathbb{R}^{2} \mid a+2 b=0\right\}$ and $W_{2}=\left\{(a, b) \in \mathbb{R}^{2} \mid a+2 b=1\right\}$. Decide which of W_{1} and W_{2} are subspaces of \mathbb{R}^{2}. Prove your answer.
2. (15 points) Consider the two subsets A and B of \mathbb{R}^{3} given by

$$
A=\{(1,1,0),(0,1,1)\}, \quad B=\{(1,2,1),(1,0,-1),(3,4,1)\}
$$

Show that the subspaces of \mathbb{R}^{3} spanned by A and B are the same.
3. (15 points) Consider the subspace W of \mathbb{R}^{4} spanned by the vectors

$$
(1,0,0,3),(-1,-2,0,1),(1,2,3,-2)
$$

Is $(2,3,-1,5) \in W$?
4. (15 points) Is the set $\{(1,-1,1),(1,1,1),(1,0,1)\} \subseteq \mathbb{R}^{3}$ linearly independent? If not, find a basis for the subspace of \mathbb{R}^{3} spanned by this set.
5. (15 points) Let F be a field. Consider the subset

$$
W=\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in F^{n} \mid \lambda_{1}+\ldots+\lambda_{n}=0\right\}
$$

of F^{n}, which you may assume is a subspace of F^{n}. Find a basis for W and determine the dimension of W as a F-vector space.
6. (25 points) (a) Carefully state the definition of the span of a subset S of a F-vector space V, and the definition of linear independence of S.
(b) Let V be a vector space and $\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of n vectors in V. Fix an integer i with $1 \leq i \leq n-1$. Prove that $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent if and only if the following three conditions all hold: $A=\left\{v_{1}, \ldots, v_{i}\right\}$ is linearly independent, $B=\left\{v_{i+1}, \ldots, v_{n}\right\}$ is linearly independent and $\operatorname{span}(A) \cap \operatorname{span}(B)=\{0\}$.

