Math 261 – Linear Algebra Fall 2000 (Exam 2)

1. (20 points) Consider the linear map $T : \mathbb{R}^3 \to \mathbb{R}^4$ given by

 $T(x_1, x_2, x_3) = (3x_1 + x_2 - 4x_3, 2x_2 + x_3, 3x_1 - 2x_3, x_2 - x_3).$

(a) What is the matrix of T with respect to the standard ordered bases of \mathbb{R}^3 and \mathbb{R}^4 ?

(b) Find bases for the kernel (null space) and the range of T.

2. (10 points) Let P_n denote the space of real polynomials of degree at most n. It has a standard ordered basis $\{1, x, \ldots, x^n\}$. Consider the linear transformation $T: P_n \to P_{n+1}$ given by $(Tf)(x) = \int_0^x f(t)dt$. Write down the matrix of T relative to the standard ordered bases of P_n and P_{n+1} . What is the rank of T?

3. (10 points) Let $T: V \to V$ be a linear operator, where V is finite-dimensional. A subspace W of V is said to be T – invariant if $TW \subseteq W$. Start with a basis $\{w_1, \ldots, w_p\}$ for W and then complete it to a basis $\beta = \{w_1, \ldots, w_p, w_{p+1}, \ldots, w_n\}$ of V. What does the matrix of T relative to the (ordered) basis β look like?

4. (15 points)

(a) Consider subspaces W_1 and W_2 of \mathbb{R}^{13} with dim $W_1 = 8$, dim $W_2 = 7$. What are the possible dimensions of $W_1 \cap W_2$?

(b) Consider a linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^3$. What are the possible values of the nullity of T?

5. (30 points)

(a) Define what it means for two vector spaces to be isomorphic.

(b) Exhibit an isomorphism between \mathbb{R}^{n+1} and the space of real polynomials of degree at most n.

(c) Suppose that $\theta: V \to W$ is an isomorphism between *F*-vector spaces *V* and *W*. Prove that if $\{v_1, \ldots, v_n\}$ is a basis of *V*, then $\{\theta(v_1), \ldots, \theta(v_n)\}$ is a basis for *W*.

6. (15 points) Let $S: V \to W$ and $T: W \to U$ be linear transformations between finitedimensional *F*-vector spaces. Let α , β and γ denote ordered bases of *V*, *W* and *U* respectively. How is the matrix $[S]^{\beta}_{\alpha}$ defined? State and carefully prove the connection between $[S]^{\beta}_{\alpha}$, $[T]^{\gamma}_{\beta}$ and $[TS]^{\gamma}_{\alpha}$.

Bonus Question (10 points) Let V be a finite dimensional vector space over a field F. Let $\Psi: V \to V^{**}$ be the natural isomorphism of V with its double dual space defined by $\Psi(v) = \hat{v}$ for $v \in V$ where $\hat{v}(f) = f(v)$ for $f \in V^*$. Let $T: V \to V^*$ be a linear transformation and $T^t: V^{**} \to V^*$ be its transpose, defined by $T^t(f) = fT$ for $f \in V^{**}$. Determine whether $T^t \Psi = T$ as linear transformations $V \to V^*$. If so, prove it. If not, find necessary and sufficient conditions on the matrix $A = [T]_{\beta}^{\beta^*}$ of T (with respect to an ordered basis β of V and corresponding dual basis β^* of V^*) for $T^t \Psi = T$ to hold.