Math 261 - Linear Algebra Fall 2000 (Exam 2)

1. (20 points) Consider the linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ given by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}+x_{2}-4 x_{3}, 2 x_{2}+x_{3}, 3 x_{1}-2 x_{3}, x_{2}-x_{3}\right)
$$

(a) What is the matrix of T with respect to the standard ordered bases of \mathbb{R}^{3} and \mathbb{R}^{4} ?
(b) Find bases for the kernel (null space) and the range of T.
2. (10 points) Let P_{n} denote the space of real polynomials of degree at most n. It has a standard ordered basis $\left\{1, x, \ldots, x^{n}\right\}$. Consider the linear transformation $T: P_{n} \rightarrow P_{n+1}$ given by $(T f)(x)=\int_{0}^{x} f(t) d t$. Write down the matrix of T relative to the standard ordered bases of P_{n} and P_{n+1}. What is the rank of T ?
3. (10 points) Let $T: V \rightarrow V$ be a linear operator, where V is finite-dimensional. A subspace W of V is said to be T - invariant if $T W \subseteq W$. Start with a basis $\left\{w_{1}, \ldots, w_{p}\right\}$ for W and then complete it to a basis $\beta=\left\{w_{1}, \ldots, w_{p}, w_{p+1}, \ldots, w_{n}\right\}$ of V. What does the matrix of T relative to the (ordered) basis β look like?
4. (15 points)
(a) Consider subspaces W_{1} and W_{2} of \mathbb{R}^{13} with $\operatorname{dim} W_{1}=8, \operatorname{dim} W_{2}=7$. What are the possible dimensions of $W_{1} \cap W_{2}$?
(b) Consider a linear transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$. What are the possible values of the nullity of T ?
5. (30 points)
(a) Define what it means for two vector spaces to be isomorphic.
(b) Exhibit an isomorphism between \mathbb{R}^{n+1} and the space of real polynomials of degree at most n.
(c) Suppose that $\theta: V \rightarrow W$ is an isomorphism between F-vector spaces V and W. Prove that if $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V, then $\left\{\theta\left(v_{1}\right), \ldots, \theta\left(v_{n}\right)\right\}$ is a basis for W.
6. (15 points) Let $S: V \rightarrow W$ and $T: W \rightarrow U$ be linear transformations between finitedimensional F-vector spaces. Let α, β and γ denote ordered bases of V, W and U respectively. How is the matrix $[S]_{\alpha}^{\beta}$ defined? State and carefully prove the connection between $[S]_{\alpha}^{\beta},[T]_{\beta}^{\gamma}$ and $[T S]_{\alpha}^{\gamma}$.
Bonus Question (10 points) Let V be a finite dimensional vector space over a field F. Let $\Psi: V \rightarrow V^{* *}$ be the natural isomorphism of V with its double dual space defined by $\Psi(v)=\hat{v}$ for $v \in V$ where $\hat{v}(f)=f(v)$ for $f \in V^{*}$. Let $T: V \rightarrow V^{*}$ be a linear transformation and $T^{t}: V^{* *} \rightarrow V^{*}$ be its transpose, defined by $T^{t}(f)=f T$ for $f \in V^{* *}$. Determine whether $T^{t} \Psi=T$ as linear transformations $V \rightarrow V^{*}$. If so, prove it. If not, find necessary and sufficient conditions on the matrix $A=[T]_{\beta}^{\beta^{*}}$ of T (with respect to an ordered basis β of V and corresponding dual basis β^{*} of V^{*}) for $T^{t} \Psi=T$ to hold.

