Math 261 - Linear Algebra
 Fall 2000 (Final Exam)

1. (30 points) Consider the linear transformation $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{\mathbf{3}}$ given by $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(3 x_{1}-2 x_{2}+4 x_{3}-x_{4}, 2 x_{1}+3 x_{2}-5 x_{3}+4 x_{4}, 4 x_{1}-7 x_{2}+13 x_{3}-6 x_{4}\right)$.
(a) Determine a basis for the null space of T.
(b) Determine a basis for the range of T.
2. (30 points) Explicitly find an ordered basis β for \mathbf{R}^{2} such that the matrix $[T]_{\beta}^{\beta}$ of the linear transformation $T: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}^{\mathbf{2}}$ given by $T(x, y)=(x+2 y, 2 x+y)$ is a diagonal matrix.
3. (30 points) Let V be a finite-dimensional vector space.
(a) Explain what is meant by saying that linear maps $S, T: V \rightarrow V$ are similar.
(b) Prove that similar linear maps $S, T: V \rightarrow V$ have the same rank.
4. (30 points)
(a) Let V, W be finite-dimensional vector spaces over a field F. Prove that there is a surjective linear map $T: V \rightarrow W$ if and only if $\operatorname{dim}(V) \geq \operatorname{dim}(W)$.
(b) Is there an injective linear transformation from the space of all $n \times n$ symmetric real matrices into $\mathbf{R}^{\mathbf{2 n}}$?
5. (30 points)
(a) Define the determinant of an $n \times n$ matrix over a field F.
(b) Let $A^{(n)}$ be the $n \times n$ real matrix with 2 's on the main diagonal, 1 's on the diagonals above and below the main diagonal and zero's everywhere else i.e with entries $\left(A^{(n)}\right)_{i, i}=2,\left(A^{(n)}\right)_{i, j}=1$ if $j-i= \pm 1$ and $\left(A^{(n)}\right)_{i, j}=0$ otherwise. Prove that $\operatorname{det}\left(A^{(n)}\right)=n+1$. (Hint: Let $a_{n}:=\operatorname{det}\left(A^{(n)}\right)$. Show by expansion along the first row that $a_{n}=2 a_{n-1}-a_{n-2}$ for $n \geq 3$).
