Final

The total number of points possible on this exam is 175.165 will be considered a perfect score.

1. (15 points)
(a) Show that the system

$$
\begin{aligned}
x+y+2 z & =2 \\
3 x+y+3 z & =2 \\
7 x-y+a z & =-2
\end{aligned}
$$

has a unique solution if $a \neq 2$.
(b) Find all solutions when $a=2$.
(c) List at least three ways you could solve the system if $a=2002$.
2. (23 points) Let T be the linear transformation from \mathbf{R}^{6} to \mathbf{R}^{4} given by $T X=A X$ where

$$
A=\left[\begin{array}{rrrrrr}
1 & 1 & 0 & -7 & 0 & -1 \\
0 & 1 & 1 & 23 & -2 & 0 \\
0 & 0 & 0 & 0 & 1 & -6 \\
0 & 0 & 0 & 0 & -1 & -7
\end{array}\right]
$$

and $X=\left(x_{1}, \ldots, x_{6}\right)^{t}$.
(a) Find a basis for the null space of T.
(b) Find a basis for the range of T.
(c) Find the null space of T^{t}.
(d) Find a basis for the range of T^{t}.
(e) Find the annihilator of the range of T .
(f) What are the rank and nullity of T ?
(g) What are the rank and nullity of T^{t} ?
3. (12 points) Let V_{n} be the space of real polynomials of degree at most n. Let k be a fixed positive integer, $k<n$. For each of the following subsets of V_{n}, determine whether it is a subspace and if so compute its dimension and find a basis for it.
(a) $S=\left\{p \in V_{n}: p\right.$ has degree $\left.k\right\}$.
(b) $S=\left\{p \in V_{n}: p\right.$ has degree $\left.\leq k\right\}$.
(c) $S=\left\{p \in V_{n}: p(x) \leq 0\right.$, all $\left.x\right\}$.
(d) $S=\left\{p \in V_{n}: p(0)+3 p^{\prime \prime}(0)=0\right\}$.
4. (10 points) If V and W are finite dimensional vector spaces and $T: V \rightarrow W$ is an isomorphism, prove that T maps a basis of V onto a basis of W.
5. (10 points) Show that the matrices $\left[\begin{array}{rr}1 & 0 \\ 5 & 11\end{array}\right]$ and $\left[\begin{array}{rr}1 & 11 \\ 0 & 5\end{array}\right]$ are not similar.
6. (10 points) Use properties of the determinant to evaluate $\left[\begin{array}{rrrr}1 & -2 & 3 & -12 \\ -5 & 12 & -14 & 19 \\ -9 & 22 & -20 & 31 \\ -4 & 9 & -14 & 15\end{array}\right]$.
7. (10 points) Let $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$. Find adj A.

