Mathematics 262
 Homework 10 solutions

Assignment:

- Section 8.4: 4, 5, 6, 14
$\S 8.4, \# 4$: If U is a unitary operator on $V=\mathbf{R}^{2}$, with matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ (with respect to the standard basis), then since U is unitary and we're working over \mathbf{R}, then we have $U^{-1}=U^{t}$. Multiplying U by U^{t} and setting the result equal to I gives three equations:

$$
\begin{aligned}
& a^{2}+b^{2}=1 \\
& a c+b d=0 \\
& c^{2}+d^{2}=1
\end{aligned}
$$

Because of the first equation, I can let $a=\cos \theta$ and $b=\sin \theta$ for some angle θ between 0 and 2π. Similarly, I can let $c=\sin \varphi$ and $d=\cos \varphi$ for some angle φ. The second equation then says that

$$
\cos \theta \sin \varphi+\sin \theta \cos \varphi=0
$$

Using a trig identity, this becomes $\sin (\theta+\varphi)=0$. Therefore, φ is either $2 \pi-\theta$ or $\pi-\theta$. If the first of these holds, then the matrix for U is $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$. If the second holds, then the matrix is $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$.
(a) $U_{\theta} U_{\varphi}$ is rotation by φ followed by rotation by θ, which is the same as $U_{\theta+\varphi}$, rotation by the angle $\theta+\varphi$. (One can also see this by multiplying out the matrices and using trig identities, but it's not as pleasant.)
(b) Well, $U^{*}=U^{t}$ since we're working over \mathbf{R}, and $U^{t}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$. Since $\sin (-\theta)=-\sin \theta$ and $\cos (-\theta)=\cos \theta$, this matrix is equal to $U_{-\theta}$. Alternatively, by part (a), $U_{\theta} U_{-\theta}=U_{0}=I$, so $U_{-\theta}=U_{\theta}^{-1}=U_{\theta}^{*}$. (Geometrically, if you rotate by θ and then by $-\theta$, you have performed the identity operation.)
(c) The change-of-basis matrix is U_{φ}, so I want to compute $U_{\varphi}^{-1} U_{\theta} U_{\varphi}$. I could compute this by multiplying out the matrices. I could also compute this using the previous parts:

$$
U_{\varphi}^{-1} U_{\theta} U_{\varphi}=U_{-\varphi} U_{\theta} U_{\varphi}=U_{-\varphi+\theta+\varphi}=U_{\theta}
$$

(I could also try to argue that if a linear operator is a rotation, it should treat the rotated basis $\left\{\alpha_{1}, \alpha_{2}\right\}$ just like standard orthonormal basis: α_{1} should get sent to $(\cos \theta) \alpha_{1}+(\sin \theta) \alpha_{2}$, etc. So the matrix for U_{θ} should be the same in this new basis.)
§8.4, \#5: Following the suggestion in the book, I let $\alpha=(1,1,1)$ and $\beta=(1,1,-2)$, and I use Gram-Schmidt to turn this into an orthonormal basis: $\alpha_{1}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ and $\alpha_{2}=\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}}\right)$. I find a vector orthogonal to both α and β by using the cross product, and I divide by its norm to get $\alpha_{3}=\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$.
Now, U sends α_{3} to itself, and it rotates the subspace spanned by α_{1} and α_{2} by the angle θ, so with respect to the orthonormal basis $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}, U$ is represented by the matrix

$$
A=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Let P be the change-of-basis matrix:

$$
P=\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0
\end{array}\right] .
$$

This is supposed to be unitary (i.e., orthogonal, since we're working over \mathbf{R}), and you should check this (e.g., check that the columns are an orthonormal set, or that $P^{-1}=P^{t}=P^{*}$). With respect to the standard basis, then, U is represented by the matrix

$$
P A P^{-1}=P A P^{t}=\left[\begin{array}{ccc}
\frac{1}{2} \cos \theta+\frac{1}{2} & \frac{1}{2} \cos \theta-\frac{1}{2} & \frac{1}{\sqrt{2}} \sin \theta \\
\frac{1}{2} \cos \theta-\frac{1}{2} & \frac{1}{2} \cos \theta+\frac{1}{2} & \frac{1}{\sqrt{2}} \sin \theta \\
-\frac{1}{\sqrt{2}} \sin \theta & -\frac{1}{\sqrt{2}} \sin \theta & \cos \theta
\end{array}\right]
$$

(Since I'm changing from the basis $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ to the standard basis, I want $P A P^{-1}$. If I were changing from the standard basis to $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$, I would want $P^{-1} A P$.) You could check this by seeing if $U \alpha_{3}=\alpha_{3}$, and seeing if $U \alpha_{i}$ looks reasonable for $i=1,2$. (For instance, it's not so hard to see that $U \alpha_{1}$ is a linear combination of α_{1} and α_{2}, so at least it's in the right general area.)
§8.4, \#6: Choose orthonormal bases for W and W^{\perp}. Together, they form an orthonormal basis for V. With respect to this basis, U is represented by the matrix $A=\left[\begin{array}{cc}I & 0 \\ 0 & -I\end{array}\right]$. (The I in the upper left is the identity matrix on W. The $-I$ in the lower right is negative the identity matrix on W^{\perp}.)
(a) From the matrix description, $A=A^{t}=A^{*}$, so U is self-adjoint. Also, $A A^{*}=A A^{t}=A^{2}=I$, so U is unitary (and also orthogonal).
(b) I guess I should find orthonormal bases for W and W^{\perp} and do a change of basis: W is spanned by $\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) . W^{\perp}$ is spanned by any two vectors orthogonal to this one, say $(1,0,-1)$ and $(0,1,0)$. These happen to be orthogonal (if they weren't, I'd use Gram-Schmidt), so an orthonormal basis for W^{\perp} is $\left\{\left(\frac{1}{\sqrt{2}}, 0,-\frac{1}{\sqrt{2}}\right),(0,1,0)\right\}$. Let P be the change-of-basis matrix

$$
P=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1 \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0
\end{array}\right]
$$

This is a unitary matrix (because the columns are an orthonormal basis), so $P^{-1}=P^{*}=P^{t}$. With respect to this basis, U is represented by the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

So with respect to the standard basis, U is represented by

$$
P A P^{-1}=P A P^{t}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

(Again, since I'm changing from some other basis to the standard basis, I look at $P A P^{-1}$, not $P^{-1} A P$.) Does this answer make sense? Well, ε_{2} is in W^{\perp}, so $U \varepsilon_{2}=-\varepsilon_{2}$. To compute $U \varepsilon_{1}$, I write $\varepsilon_{1}=\frac{1}{2}(1,0,1)+$ $\frac{1}{2}(1,0,-1)$; the first of these vectors is in W, the second in W^{\perp}. Thus $U \varepsilon_{1}=\frac{1}{2}(1,0,1)-\frac{1}{2}(1,0,-1)=$ $(0,0,1)=\varepsilon_{3}$. Similarly, $U \varepsilon_{3}=\varepsilon_{1}$. So this is indeed the correct matrix.

§8.4, \#14:

(a) Let's see. If $T(0)=0$, then

$$
\|T \alpha\|=\|T \alpha-0\|=\|T \alpha-T 0\|=\|\alpha-0\|=\|\alpha\|,
$$

so if I knew that T were linear, I could conclude that T is unitary. So I have to prove linearity.
First, I'll show that T preserves inner products. Since $(\alpha \mid \beta)=\frac{1}{4}\left(\|\alpha+\beta\|^{2}-\|\alpha-\beta\|^{2}\right)$, and since $\|T \alpha-T \beta\|=\|\alpha-\beta\|$, it's good enough to show that $\|T \alpha+T \beta\|=\|\alpha+\beta\|$. Well,

$$
\|T \alpha+T \beta\|=\|T \alpha-(-T \beta)\|
$$

If I knew that $-T \beta=T(-\beta)$, then this would equal

$$
\|T \alpha-T(-\beta)\|=\|\alpha-(-\beta)\|=\|\alpha+\beta\|
$$

So it's good enough to show that $T(-\beta)=-T \beta$ for each vector β. Find a vector γ perpendicular to β. Then $\|T \beta\|=\|\beta\|,\|T \gamma\|=\|\gamma\|$, and $\|T \gamma-T \beta\|=\|\gamma-\beta\|$. Since the vectors β, γ, and $\gamma-\beta$ form a right triangle, and since the vectors $T \beta, T \gamma$, and $T \gamma-T \beta$ have the same lengths, then they must also form a right triangle. In particular, $T \beta$ is perpendicular to $T \gamma$. Similarly, $T(-\beta)$ is perpendicular to $T \gamma$. Two vectors in \mathbf{R}^{2} which are perpendicular to the same vector must be parallel, so $T \beta$ and $T(-\beta)$ are parallel. They also have the same length, so $T(-\beta)= \pm T \beta$. Lastly, $\|T \beta-T(-\beta)\|=\|\beta-(-\beta)\|=2\|\beta\|$; therefore $T(-\beta)$ must be $-T \beta$. Therefore T preserves inner products.

Let $\varepsilon_{1}=(1,0)$ and $\varepsilon_{2}=(0,1)$. Since T preserves norms and inner products, then $T \varepsilon_{1}$ and $T \varepsilon_{2}$ are an orthonormal basis for \mathbf{R}^{2}. I claim that T is linear. Suppose $\alpha=\left(x_{1}, x_{2}\right)=x_{1} \varepsilon_{1}+x_{2} \varepsilon_{2}$. Then $\left(T \alpha \mid T \varepsilon_{i}\right)=\left(\alpha \mid \varepsilon_{i}\right)=x_{i}$, so $T \alpha=x_{1} T \varepsilon_{1}+x_{2} T \varepsilon_{2}$. In other words,

$$
T\left(x_{1} \varepsilon_{1}+x_{2} \varepsilon_{2}\right)=x_{1} T \varepsilon_{1}+x_{2} T \varepsilon_{2}
$$

This implies that T is linear. If you want to be explicit: if $\beta=y_{1} \varepsilon_{1}+y_{2} \varepsilon_{2}$, then

$$
\begin{aligned}
T(c \alpha+\beta) & =T\left(\left(c x_{1}+y_{1}\right) \varepsilon_{1}+\left(c x_{2}+y_{2}\right) \varepsilon_{2}\right) \\
& =\left(c x_{1}+y_{1}\right) T \varepsilon_{1}+\left(c x_{2}+y_{2}\right) T \varepsilon_{2} \\
& =\left(c x_{1} T \varepsilon_{1}+c x_{2} T \varepsilon_{2}\right)+\left(y_{1} T \varepsilon_{1}+y_{2} T \varepsilon_{2}\right) \\
& =c T \alpha+T \beta .
\end{aligned}
$$

(b) Given a rigid motion f of \mathbf{R}^{2}, find a point γ so that $f(\gamma)=0$ (justification below), and define a function $U: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $U(\alpha)=f(\alpha+\gamma)$. Then $U(0)=f(\gamma)=0$ and U is a rigid motion:

$$
\|U \alpha-U \beta\|=\|f(\alpha+\gamma)-f(\beta+\gamma)\|=\|(\alpha+\gamma)-(\beta+\gamma)\|=\|\alpha-\beta\|
$$

By part (a), then, U is a unitary (linear) operator. Furthermore, for all vectors $\alpha, f(\alpha+\gamma)=U(\alpha)$. Letting $\beta=\alpha-\gamma$, we get

$$
f(\beta)=U(\beta-\gamma)=U\left(T_{-\gamma}(\beta)\right)=U \circ T_{-\gamma}(\beta)
$$

where $T_{-\gamma}$ is translation by $-\gamma: T_{-\gamma}(\beta)=\beta-\gamma$.
I still owe you the justification that there is a point γ so that $f(\gamma)=0$. The idea is that if f is a rigid motion, then it preserves all distances, angles, and other geometric information. So if f takes 0 to some point α, then f takes the circle of radius $\|\alpha\|$ centered at 0 to the circle of radius $\|\alpha\|$ centered at α. In particular, since 0 is on this second circle, then f takes some point on the first circle to 0 . One can do this more carefully (just from the definition of rigid motion, without hand-waving about "preserving other geometric information"), but I don't feel like writing down the details.
(c) This follows from problem 4. Every unitary operator on \mathbf{R}^{2} is either a rotation or a reflection followed by a rotation, and every rigid motion is a translation followed by one of these.

