
Mathematics 262
Homework 10 solutions

Assignment:

• Section 8.4: 4, 5, 6, 14

§8.4, #4: If U is a unitary operator on V = R2, with matrix
[
a b
c d

]
(with respect to the standard

basis), then since U is unitary and we’re working over R, then we have U−1 = U t. Multiplying U by U t

and setting the result equal to I gives three equations:

a2 + b2 = 1,

ac + bd = 0,

c2 + d2 = 1.

Because of the first equation, I can let a = cos θ and b = sin θ for some angle θ between 0 and 2π.
Similarly, I can let c = sinϕ and d = cos ϕ for some angle ϕ. The second equation then says that

cos θ sinϕ + sin θ cos ϕ = 0.

Using a trig identity, this becomes sin(θ+ϕ) = 0. Therefore, ϕ is either 2π−θ or π−θ. If the first of these

holds, then the matrix for U is
[
cos θ − sin θ
sin θ cos θ

]
. If the second holds, then the matrix is

[
cos θ sin θ
sin θ − cos θ

]
.

(a) UθUϕ is rotation by ϕ followed by rotation by θ, which is the same as Uθ+ϕ, rotation by the angle
θ + ϕ. (One can also see this by multiplying out the matrices and using trig identities, but it’s not as
pleasant.)

(b) Well, U∗ = U t since we’re working over R, and U t =
[

cos θ sin θ
− sin θ cos θ

]
. Since sin(−θ) = − sin θ

and cos(−θ) = cos θ, this matrix is equal to U−θ. Alternatively, by part (a), UθU−θ = U0 = I, so
U−θ = U−1

θ = U∗θ . (Geometrically, if you rotate by θ and then by −θ, you have performed the identity
operation.)

(c) The change-of-basis matrix is Uϕ, so I want to compute U−1
ϕ UθUϕ. I could compute this by multiplying

out the matrices. I could also compute this using the previous parts:

U−1
ϕ UθUϕ = U−ϕUθUϕ = U−ϕ+θ+ϕ = Uθ.

(I could also try to argue that if a linear operator is a rotation, it should treat the rotated basis {α1, α2}
just like standard orthonormal basis: α1 should get sent to (cos θ)α1 + (sin θ)α2, etc. So the matrix for
Uθ should be the same in this new basis.)

§8.4, #5: Following the suggestion in the book, I let α = (1, 1, 1) and β = (1, 1,−2), and I use
Gram-Schmidt to turn this into an orthonormal basis: α1 = ( 1√

3
, 1√

3
, 1√

3
) and α2 = ( 1√

6
, 1√

6
,− 2√

6
). I

find a vector orthogonal to both α and β by using the cross product, and I divide by its norm to get
α3 = (− 1√

2
, 1√

2
, 0).

Now, U sends α3 to itself, and it rotates the subspace spanned by α1 and α2 by the angle θ, so with
respect to the orthonormal basis {α1, α2, α3}, U is represented by the matrix

A =

cos θ − sin θ 0
sin θ cosθ 0

0 0 1

 .

Let P be the change-of-basis matrix:

P =


1√
3

1√
6

− 1√
2

1√
3

1√
6

1√
2

1√
3

− 2√
6

0

 .



This is supposed to be unitary (i.e., orthogonal, since we’re working over R), and you should check this
(e.g., check that the columns are an orthonormal set, or that P−1 = P t = P ∗). With respect to the
standard basis, then, U is represented by the matrix

PAP−1 = PAP t =


1
2 cos θ + 1

2
1
2 cos θ − 1

2
1√
2

sin θ
1
2 cos θ − 1

2
1
2 cos θ + 1

2
1√
2

sin θ

− 1√
2

sin θ − 1√
2

sin θ cos θ

 .

(Since I’m changing from the basis {α1, α2, α3} to the standard basis, I want PAP−1. If I were changing
from the standard basis to {α1, α2, α3}, I would want P−1AP .) You could check this by seeing if
Uα3 = α3, and seeing if Uαi looks reasonable for i = 1, 2. (For instance, it’s not so hard to see that Uα1

is a linear combination of α1 and α2, so at least it’s in the right general area.)

§8.4, #6: Choose orthonormal bases for W and W⊥. Together, they form an orthonormal basis for V .

With respect to this basis, U is represented by the matrix A =
[
I 0
0 −I

]
. (The I in the upper left is the

identity matrix on W . The −I in the lower right is negative the identity matrix on W⊥.)

(a) From the matrix description, A = At = A∗, so U is self-adjoint. Also, AA∗ = AAt = A2 = I, so U is
unitary (and also orthogonal).

(b) I guess I should find orthonormal bases for W and W⊥ and do a change of basis: W is spanned by
( 1√

2
, 0, 1√

2
). W⊥ is spanned by any two vectors orthogonal to this one, say (1, 0,−1) and (0, 1, 0). These

happen to be orthogonal (if they weren’t, I’d use Gram-Schmidt), so an orthonormal basis for W⊥ is
{( 1√

2
, 0,− 1√

2
), (0, 1, 0)}. Let P be the change-of-basis matrix

P =

 1√
2

1√
2

0
0 0 1
1√
2

− 1√
2

0

 .

This is a unitary matrix (because the columns are an orthonormal basis), so P−1 = P ∗ = P t. With
respect to this basis, U is represented by the matrix

A =

1 0 0
0 −1 0
0 0 −1

 .

So with respect to the standard basis, U is represented by

PAP−1 = PAP t =

0 0 1
0 −1 0
1 0 0

 .

(Again, since I’m changing from some other basis to the standard basis, I look at PAP−1, not P−1AP .)
Does this answer make sense? Well, ε2 is in W⊥, so Uε2 = −ε2. To compute Uε1, I write ε1 = 1

2 (1, 0, 1)+
1
2 (1, 0,−1); the first of these vectors is in W , the second in W⊥. Thus Uε1 = 1

2 (1, 0, 1) − 1
2 (1, 0,−1) =

(0, 0, 1) = ε3. Similarly, Uε3 = ε1. So this is indeed the correct matrix.



§8.4, #14:

(a) Let’s see. If T (0) = 0, then

||Tα|| = ||Tα− 0|| = ||Tα− T0|| = ||α− 0|| = ||α||,

so if I knew that T were linear, I could conclude that T is unitary. So I have to prove linearity.

First, I’ll show that T preserves inner products. Since (α|β) = 1
4 (||α + β||2 − ||α − β||2), and since

||Tα− Tβ|| = ||α− β||, it’s good enough to show that ||Tα + Tβ|| = ||α + β||. Well,

||Tα + Tβ|| = ||Tα− (−Tβ)||.

If I knew that −Tβ = T (−β), then this would equal

||Tα− T (−β)|| = ||α− (−β)|| = ||α + β||.

So it’s good enough to show that T (−β) = −Tβ for each vector β. Find a vector γ perpendicular to β.
Then ||Tβ|| = ||β||, ||Tγ|| = ||γ||, and ||Tγ − Tβ|| = ||γ − β||. Since the vectors β, γ, and γ − β form a
right triangle, and since the vectors Tβ, Tγ, and Tγ − Tβ have the same lengths, then they must also
form a right triangle. In particular, Tβ is perpendicular to Tγ. Similarly, T (−β) is perpendicular to Tγ.
Two vectors in R2 which are perpendicular to the same vector must be parallel, so Tβ and T (−β) are
parallel. They also have the same length, so T (−β) = ±Tβ. Lastly, ||Tβ−T (−β)|| = ||β−(−β)|| = 2||β||;
therefore T (−β) must be −Tβ. Therefore T preserves inner products.

Let ε1 = (1, 0) and ε2 = (0, 1). Since T preserves norms and inner products, then Tε1 and Tε2 are
an orthonormal basis for R2. I claim that T is linear. Suppose α = (x1, x2) = x1ε1 + x2ε2. Then
(Tα|Tεi) = (α|εi) = xi, so Tα = x1Tε1 + x2Tε2. In other words,

T (x1ε1 + x2ε2) = x1Tε1 + x2Tε2.

This implies that T is linear. If you want to be explicit: if β = y1ε1 + y2ε2, then

T (cα + β) = T ((cx1 + y1)ε1 + (cx2 + y2)ε2)
= (cx1 + y1)Tε1 + (cx2 + y2)Tε2

= (cx1Tε1 + cx2Tε2) + (y1Tε1 + y2Tε2)
= cTα + Tβ.

(b) Given a rigid motion f of R2, find a point γ so that f(γ) = 0 (justification below), and define a
function U : R2 → R2 by U(α) = f(α + γ). Then U(0) = f(γ) = 0 and U is a rigid motion:

||Uα− Uβ|| = ||f(α + γ)− f(β + γ)|| = ||(α + γ)− (β + γ)|| = ||α− β||.

By part (a), then, U is a unitary (linear) operator. Furthermore, for all vectors α, f(α + γ) = U(α).
Letting β = α− γ, we get

f(β) = U(β − γ) = U(T−γ(β)) = U ◦ T−γ(β),

where T−γ is translation by −γ: T−γ(β) = β − γ.

I still owe you the justification that there is a point γ so that f(γ) = 0. The idea is that if f is a rigid
motion, then it preserves all distances, angles, and other geometric information. So if f takes 0 to some
point α, then f takes the circle of radius ||α|| centered at 0 to the circle of radius ||α|| centered at α.
In particular, since 0 is on this second circle, then f takes some point on the first circle to 0. One can
do this more carefully (just from the definition of rigid motion, without hand-waving about “preserving
other geometric information”), but I don’t feel like writing down the details.

(c) This follows from problem 4. Every unitary operator on R2 is either a rotation or a reflection followed
by a rotation, and every rigid motion is a translation followed by one of these.


