Mathematics 262
Solutions to practice problems

Assignment:

e Section 8.4: 12

e Section 8.5: 1, 3, 4, 10, 12

§8.4, #12: It’s probably worthwhile thinking about how to do this problem
without the material from Section 8.5. Using that material, though, makes
things easier. The problem asks you to show that if V' is a finite-dimensional
inner product space, then for every linear operator on T which is both self-
adjoint and unitary, there is a subspace W of V' so that T" acts as the identity
on W and T acts as —I on the orthogonal complement W+. In other words, I
want to find a basis for V' with respect to which the matrix for T is of the form

10 ... 0 0 ... 0
01 ... 00 ... 0
A—{é _OI}— 0 0 1 0 0
0 0 -1 0
00 ... 0 0 ... —1]

If T is both self-adjoint and unitary, then the main theorems of Section 8.5
apply: there is a basis for V' consisting of eigenvectors for 7. What are the
eigenvalues for V7?7 Since T is self-adjoint, they’re real. Since T is unitary, they
have norm 1. Hence 1 and —1 are the only eigenvalues. So I take my basis of
eigenvectors and order it by putting the eigenvectors corresponding to 1 first,
and then the eigenvectors corresponding to —1. This does the trick.

§8.5, #1: All you have to do is find an orthonormal set of eigenvectors and
make them the columns of the matrix P. (It wouldn’t hurt to check that P*AP
is actually diagonal, too.) Here are the matrices P for the three matrices in the

problem:
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For the third one, you might be able to recognize the matrix A as a reflection,
and in particular, reflection across the line through the origin at angle % from the
horizontal. So any vector parallel to this line is an eigenvector with eigenvalue
1; any vector perpendicular to this is an eigenvector with eigenvalue —1. If you
don’t see this, you have to use a few trig identities to get the right answer.
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88.5, #3: The entries of D are the eigenvalues of A. The characteristic poly-
nomial is 23 — 922 — 6x. This factors as z(z? — 92 — 6), and so has roots 0,



9£v105 5105. There are several choices for D, depending on the order in which we
put the eigenvalues; one choice would be

0 0 0
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88.5, #4: To show that T is normal, you have to check that AA* = A*A.
Then you find the eigenvalues for A, which are 1 +4 and 1 — 4. Then you find
corresponding eigenvectors, which are (1,1) and (—1,1). Then you normalize
to get an orthonormal basis:

1 1 1 1
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§8.5, #10: We did this in class using the spectral theorem. A is a positive
matrix if A is Hermitian and X*AX > 0 for every nonzero column vector X.
Since A is Hermitian, then V has an orthonormal basis consisting of eigenvectors
for A; with respect to that basis, A becomes a diagonal matrix D. Since X*AX
is always positive, then e} De; is positive for each ¢, where ¢; is the ith standard
basis vector. On the other hand €] De; is the ith entry on the diagonal of D,
so we can conclude that all of the entries of D are positive. Therefore D has a
square root. Changing back to the original basis gives a square root for A. (I've
left out lots of details here, and you might want to fill them in.)

88.5, #12: Let T be normal. If I view T as operating on a complex vector space
V', then by the main theorem (Theorem 22 in the book), there is an orthonormal
basis of V' consisting of eigenvectors of T. Note the word “orthonormal.”

(This isn’t quite enough. I should really start with a normal operator T acting
on any vector space V. If V happens to be complex, the previous paragraph
solves the problem. Otherwise, if V is real and if @ and ( are two eigenvectors
corresponding to distinct eigenvalues ¢ and d, then I have to extend the action
of T on V to an action of T on a complex vector space W, note that a and 3 are
still eigenvectors when viewed as elements of W, and then apply the argument
of the previous paragraph.)



