Mathematics 262
 "Homework 4" solutions

Assignment: Section 6.2, problems 1, 4, 6, 7
$\S 6.2, \# 1$: For the matrix

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

the characteristic polynomial is $(x-1) x$, so the characteristic values are 1 and 0. (This is true over both \mathbf{R} and \mathbf{C}.) The vector $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is an eigenvector for the eigenvalue 1 , and the vector $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is an eigenvector for 2.

For the matrix

$$
\left[\begin{array}{cc}
2 & 3 \\
-1 & 1
\end{array}\right]
$$

the characteristic polynomial is $x^{2}-3 x+5$, which has no roots over \mathbf{R}, so T has no characteristic values. The operator U, defined over \mathbf{C}, has characteristic values $\frac{3 \pm i \sqrt{11}}{2}$. The corresponding characteristic vectors are messy. Whenever you have a 2×2 matrix A with characteristic value c, then the rows of $c I-A$ are linearly dependent; since there are only two rows, this means that either one row is zero, or each row is a scalar multiple of the other. In general, this is a good way to check your work; if the algebra is a bit complicated, as in this case, you can also just look at, say, the second row. For the characteristic value $c=\frac{3+i \sqrt{11}}{2}, c I-A$ is

$$
\left[\begin{array}{cc}
\frac{3+i \sqrt{11}}{2}-2 & -3 \\
1 & \frac{3+i \sqrt{11}}{2}-1
\end{array}\right]
$$

From the second row, I can see that $\left(\frac{3+i \sqrt{11}}{2}-1,-1\right)$ is a characteristic vector. I could instead have used the first row to get the characteristic vector $\left(3, \frac{3+i \sqrt{11}}{2}-\right.$ 2), which is a scalar multiple of the first vector, even though it may not look like it.

Similarly, the other characteristic value has associated characteristic vector $\left(\frac{3-i \sqrt{11}}{2}-1,-1\right)$.

The characteristic polynomial of the matrix

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

is $x(x-2)$, so the roots are 0 and 2. 0 has eigenvector $\left[\begin{array}{c}1 \\ -1\end{array}\right]$, and 2 has eigenvector $\left[\begin{array}{l}1 \\ 1\end{array}\right] .($ Same for T and U.
$\S 6.2, \# 4$: First I'll find the characteristic values, then for each of those, I'll find characteristic vectors. The characteristic polynomial is $f(x)=x^{3}-x^{2}-5 x-3$. By inspection (i.e., guessing), I find that -1 is a root, so I factor out $x+1$ and see what's left; I get that $f(x)=(x+1)\left(x^{2}-2 x-3\right)=(x+1)^{2}(x-3)$. For -1 , we need to find 2 linearly independent characteristic vectors; we start by writing down the matrix $-I-A$:

$$
\left[\begin{array}{ccc}
8 & -4 & -4 \\
8 & -4 & -4 \\
16 & -8 & -8
\end{array}\right]
$$

This obviously has rank 1 , and hence nullity 2 . The nullspace is spanned by the vectors $(1,2,0)$ and $(1,0,2)$ (for example). A characteristic vector for 3 is $(1,1,2)$. These three vectors together form a basis for \mathbf{R}^{3}, with respect to which T is diagonal. In fact, the matrix for T in this basis is

$$
\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

$\S 6.2, \# 6$: The given matrix has characteristic polynomial x^{4}, which has only one root, 0 . So for this to be diagonalizable, the eigenspace for 0 must have dimension 4. Equivalently, the nullity of the matrix $0 I-A=-A$ must be 4 . Then $-A$ must be the zero matrix, so we must have $a=b=c=0$.
$\S 6.2, \# 7$: If T has n different eigenvalues c_{1}, \ldots, c_{n}, then since the characteristic polynomial for T has degree n, it must be $\left(x-c_{1}\right) \ldots\left(x-c_{n}\right)$. To apply our theorem, we only have to know that for each j, the eigenspace associated to c_{j} has the correct dimension, which in this case is 1 . Eigenspaces always have dimension at least 1 , and their dimension is at most the multiplicity of their eigenvalue as a root of the characteristic polynomial. In this case, that means that each eigenspace has dimension at most 1 (since there are no repeated roots of the characteristic polynomial), and hence has dimension exactly 1.

By the way, this is probably the easiest way to check that a matrix is diagonalizable, since in this case you just have to check that there are n distinct roots of the characteristic polynomial. When there are repeated roots, then you have to work harder to see whether it's diagonalizable.

