
Mathematics 262
“Homework 4” solutions

Assignment: Section 6.2, problems 1, 4, 6, 7

§6.2, #1: For the matrix [
1 0
0 0

]
,

the characteristic polynomial is (x− 1)x, so the characteristic values are 1 and

0. (This is true over both R and C.) The vector
[
1
0

]
is an eigenvector for the

eigenvalue 1, and the vector
[
0
1

]
is an eigenvector for 2.

For the matrix [
2 3
−1 1

]
,

the characteristic polynomial is x2 − 3x + 5, which has no roots over R, so T
has no characteristic values. The operator U , defined over C, has characteristic
values 3±i
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2 . The corresponding characteristic vectors are messy. Whenever
you have a 2× 2 matrix A with characteristic value c, then the rows of cI − A
are linearly dependent; since there are only two rows, this means that either
one row is zero, or each row is a scalar multiple of the other. In general, this
is a good way to check your work; if the algebra is a bit complicated, as in this
case, you can also just look at, say, the second row. For the characteristic value
c = 3+i
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2 , cI −A is [
3+i
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2 − 2 −3
1 3+i
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11

2 − 1

]
.

From the second row, I can see that (3+i
√

11
2 −1,−1) is a characteristic vector. I

could instead have used the first row to get the characteristic vector (3, 3+i
√

11
2 −

2), which is a scalar multiple of the first vector, even though it may not look
like it.

Similarly, the other characteristic value has associated characteristic vector
( 3−i
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2 − 1,−1).

The characteristic polynomial of the matrix[
1 1
1 1

]

is x(x − 2), so the roots are 0 and 2. 0 has eigenvector
[

1
−1

]
, and 2 has

eigenvector
[
1
1

]
. (Same for T and U .)



§6.2, #4: First I’ll find the characteristic values, then for each of those, I’ll find
characteristic vectors. The characteristic polynomial is f(x) = x3−x2−5x−3.
By inspection (i.e., guessing), I find that −1 is a root, so I factor out x + 1 and
see what’s left; I get that f(x) = (x + 1)(x2 − 2x − 3) = (x + 1)2(x − 3). For
−1, we need to find 2 linearly independent characteristic vectors; we start by
writing down the matrix −I −A: 8 −4 −4

8 −4 −4
16 −8 −8

 .

This obviously has rank 1, and hence nullity 2. The nullspace is spanned by
the vectors (1, 2, 0) and (1, 0, 2) (for example). A characteristic vector for 3 is
(1, 1, 2). These three vectors together form a basis for R3, with respect to which
T is diagonal. In fact, the matrix for T in this basis is−1 0 0

0 −1 0
0 0 3

 .

§6.2, #6: The given matrix has characteristic polynomial x4, which has only
one root, 0. So for this to be diagonalizable, the eigenspace for 0 must have
dimension 4. Equivalently, the nullity of the matrix 0I − A = −A must be 4.
Then −A must be the zero matrix, so we must have a = b = c = 0.

§6.2, #7: If T has n different eigenvalues c1, . . . , cn, then since the characteristic
polynomial for T has degree n, it must be (x − c1) . . . (x − cn). To apply our
theorem, we only have to know that for each j, the eigenspace associated to
cj has the correct dimension, which in this case is 1. Eigenspaces always have
dimension at least 1, and their dimension is at most the multiplicity of their
eigenvalue as a root of the characteristic polynomial. In this case, that means
that each eigenspace has dimension at most 1 (since there are no repeated roots
of the characteristic polynomial), and hence has dimension exactly 1.

By the way, this is probably the easiest way to check that a matrix is diagonal-
izable, since in this case you just have to check that there are n distinct roots
of the characteristic polynomial. When there are repeated roots, then you have
to work harder to see whether it’s diagonalizable.


