Mathematics 262

Homework 5 solutions

Assignment: Section 6.2, problems 11, 12, 13; Section 6.3, problems 1, 5, 6, 8.
$\S 6.2, \# 11$: If N is not the zero matrix, then there is a (nonzero) vector α so that $N \alpha \neq \overrightarrow{0}$. Let $\beta=N \alpha$; then

$$
N \beta=N(N \alpha)=N^{2} \alpha=\overrightarrow{0}=0 \beta
$$

This means that 0 is an eigenvalue, with eigenvector β. Since β is in the nullspace of N and α isn't, then α and β are linearly independent, and hence form a basis. With respect to this basis, the matrix for N looks like $\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$.
$\S 6.2, \# 12$: [partial solution] Since we are working over the complex numbers, then the characteristic polynomial for A factors into linear terms, say as $(x-a)(x-b)$. If a and b are distinct, then we know (by problem 7 , for instance, which was one of the practice problems last week) that A is diagonalizable, so A is similar to $\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$.
If $a=b$, then the eigenspace for a has dimension 1 or 2 . If it has dimension 2 , then by the theorem from class, A is diagonalizable, and hence is similar to $\left[\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right]$ (i.e., to $\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$, where $a=b$). If the eigenspace for a has dimension 1, then A is not diagonalizable, so we'd better show that it's similar to $\left[\begin{array}{ll}a & 0 \\ 1 & a\end{array}\right]$. You should keep working on this, and turn it in next week.
§6.2, \#13: Suppose that for some function f, we have $T(f)=c f$. Then

$$
c f(x)=\int_{0}^{x} f(t) d t
$$

for every x. (In particular, $f(0)=0$.) Differentiating both sides and using the fundamental theorem of calculus gives

$$
c f^{\prime}(x)=f(x)
$$

If $c=0$, then obviously $f(x)=0$ for all x. Otherwise, this is a separable differential equation; its only solution satisfying the initial condition $f(0)=0$ is the zero function $f(x)=0$. Since the zero function (i.e., vector) can never be an eigenvector, there are no eigenvectors, so there are no eigenvalues.
$\S 6.3, \# 1$: The minimal polynomial for I is $p(x)=x-1$, since for a matrix A this becomes $p(A)=A-I$. If $A=I$, then $I-I$ is certainly 0 . The minimal polynomial for the zero operator is $p(x)=x$.
$\S 6.3, \# 5$: Since T satisfies $g(x)=x^{k}$, then $p(x)$ must divide evenly into x^{k}. Therefore $p(x)=x^{j}$ for some j. Since the degree of $p(x)$ is at most n, then $j \leq n$. Well, if $T^{j}=0$ for some j with $j \leq n$, then also $T^{n}=0$.
$\S 6.3, \# 6: A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
$\S 6.3, \# 8$: Given a vector α, write it in coordinates as $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$. Then P is defined by $P \alpha=\alpha_{1}$. It's easy to check that $P(\alpha+\beta)=\alpha_{1}+\beta_{1}=P(\alpha)+P(\beta)$, and that $P(c \alpha)=c \alpha_{1}=c P(\alpha)$. (For one thing, you can write P as the matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.) The minimal polynomial is $p(x)=x^{2}-x$.

