Mathematics 262 Homework 5 solutions

Assignment: Section 6.2, problems 11, 12, 13; Section 6.3, problems 1, 5, 6, 8.

§6.2, #11: If N is not the zero matrix, then there is a (nonzero) vector α so that $N\alpha \neq \vec{0}$. Let $\beta = N\alpha$; then

$$N\beta = N(N\alpha) = N^2\alpha = \vec{0} = 0\beta.$$

This means that 0 is an eigenvalue, with eigenvector β . Since β is in the nullspace of N and α isn't, then α and β are linearly independent, and hence form a basis. With respect to this basis, the matrix for N looks like $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$.

§6.2, #12: [partial solution] Since we are working over the complex numbers, then the characteristic polynomial for A factors into linear terms, say as (x - a)(x - b). If a and b are distinct, then we know (by problem 7, for instance, which was one of the practice problems last week) that A is diagonalizable, so A is similar to $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$.

If a = b, then the eigenspace for a has dimension 1 or 2. If it has dimension 2, then by the theorem from class, A is diagonalizable, and hence is similar to $\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$ (i.e., to $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$, where a = b). If the eigenspace for a has dimension 1, then A is not diagonalizable, so we'd better show that it's similar to $\begin{bmatrix} a & 0 \\ 1 & a \end{bmatrix}$. You

should keep working on this, and turn it in next week.

§6.2, #13: Suppose that for some function f, we have T(f) = cf. Then

$$cf(x) = \int_0^x f(t) \ dt$$

for every x. (In particular, f(0) = 0.) Differentiating both sides and using the fundamental theorem of calculus gives

cf'(x) = f(x).

If c = 0, then obviously f(x) = 0 for all x. Otherwise, this is a separable differential equation; its only solution satisfying the initial condition f(0) = 0 is the zero function f(x) = 0. Since the zero function (i.e., vector) can never be an eigenvector, there are no eigenvectors, so there are no eigenvalues.

§6.3, #1: The minimal polynomial for I is p(x) = x - 1, since for a matrix A this becomes p(A) = A - I. If A = I, then I - I is certainly 0. The minimal polynomial for the zero operator is p(x) = x.

§6.3, #5: Since T satisfies $g(x) = x^k$, then p(x) must divide evenly into x^k . Therefore $p(x) = x^j$ for some j. Since the degree of p(x) is at most n, then $j \leq n$. Well, if $T^j = 0$ for some j with $j \leq n$, then also $T^n = 0$.

§6.3, #6:
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
.

§6.3, #8: Given a vector α , write it in coordinates as $\alpha = (\alpha_1, \alpha_2)$. Then *P* is defined by $P\alpha = \alpha_1$. It's easy to check that $P(\alpha + \beta) = \alpha_1 + \beta_1 = P(\alpha) + P(\beta)$, and that $P(c\alpha) = c\alpha_1 = cP(\alpha)$. (For one thing, you can write *P* as the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.) The minimal polynomial is $p(x) = x^2 - x$.