Mathematics 262

Homework 6 solutions

Assignment: Section 6.2, problem 12 (cont'd); Section 6.4, problems 1, 4, 5, 9
$\S 6.2, \# 12$: When last we left our heroes, they had solved this problem except for the case when the matrix A has one eigenvalue a, with a 1-dimensional eigenspace. The characteristic polynomial for A is $(x-a)^{2}$; by the Cayley-Hamilton theorem, we have $(A-a I)^{2}=0$. Now we can apply problem 11 to the matrix $A-a I$, to conclude that $A-a I$ is similar to either the zero matrix or to $\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. In other words, for some invertible matrix P, we have

$$
P(A-a I) P^{-1}=P A P^{-1}-P(a I) P^{-1}=P A P^{-1}-a I=\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \text { or }\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right\}
$$

Hence $P A P^{-1}$ is equal to either $a I$ or to $\left[\begin{array}{ll}a & 0 \\ 1 & a\end{array}\right]$. The first case can't actually happen, because then the eigenspace for a would be 2-dimensional; therefore A must be similar to $\left[\begin{array}{cc}a & 0 \\ 1 & a\end{array}\right]$.
$\S 6.4, \# 1$: (a) If T has an invariant subspace other than 0 and \mathbf{R}^{2}, then it must be one-dimensional, which means that there must be a nonzero vector α so that $T \alpha=c \alpha$ for some c. In other words, T must have an eigenvalue. But the characteristic polynomial for T is $x^{2}-3 x+4$, which has no real roots.
(b) The characteristic polynomial for A has complex roots $\frac{3 \pm \sqrt{9-16}}{2}$. These two distinct roots are the eigenvalues, and their one-dimensional eigenspaces are both invariant subspaces. (In fact, they are the only invariant one-dimensional subspaces, but you weren't asked to show that.)
$\S 6.4, \# 4$: By the theorem from class, if we want to know whether A is similar to a triangular matrix, we should try to find the minimal polynomial for A. To do this, first we find the characteristic polynomial; it ends up being $f(x)=x^{3}$. Since the minimal polynomial divides evenly into this, it must be $p(x)=x^{r}$, where r is 1,2 , or 3 . In any case, it factors into linear terms, and so A is similar to a triangular matrix (with 0's on the diagonal-you always get the eigenvalues on the diagonal).
To find that triangular matrix, I guess we should look for a basis, as in the proof of the theorem. A has only one eigenvalue, 0 , so the first basis element should be an eigenvector for 0 . The eigenspace is 1 -dimensional, spanned by $(1,0,-1)$, so we'll let $\alpha_{1}=(1,0,-1)$. Now we look for a vector α_{2} so that $(A-c I) \alpha_{2}$ is in the vector space spanned by α_{1}, where c is "some eigenvector of A." A only has one eigenvector, 0 , so we can rewrite this equation as

$$
A \alpha_{2}=b \alpha_{1}
$$

If you solve this equation for α_{2} (and in fact you might as well let $b=1$, right?), you find that there are several possibilities for α_{2}, so you pick one: let $\alpha_{2}=(1,1,0)$. (Another possibility is $(0,1,1)$, which is $\alpha_{2}-\alpha_{1}$-any linear combination of α_{1} and α_{2} would have worked.) Now we want a vector α_{3}, not in the span of $\left(\alpha_{1}, \alpha_{2}\right)$, which satisfies

$$
A \alpha_{3}=a \alpha_{1}+b \alpha_{2}
$$

for some scalars a and b. Actually, at this point you know you're supposed to have a basis, so you could try anything for α_{3} which is linearly independent from the other two, and see what happens. For instance, the vector $\alpha_{3}=(1,0,0)$ is a solution to

$$
A \alpha_{3}=-2 \alpha_{1}+2 \alpha_{2}=\left[\begin{array}{l}
0 \\
2 \\
2
\end{array}\right]
$$

With respect to the basis $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$, the matrix A is

$$
\left[\begin{array}{ccc}
0 & 1 & -2 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

(Note: the matrix A has rank 2, and so does this matrix. So this answer may in fact be correct. There are also lots of possible correct answers, unfortunately for the grader.)
§6.4, \#5: If the matrix A satisfies $A^{2}=A$, then it satisfies the polynomial $x^{2}-x=x(x-1)$. Therefore the minimal polynomial for A divides evenly into $x(x-1)$, and so factors into distinct linear terms. Therefore A is similar to a diagonal matrix.
$\S 6.4, \# 9$: Yes, the space of polynomials is invariant under T : the integral of any polynomial is again a polynomial.
Yes, the space of differentiable functions is invariant under T : by the fundamental theorem of calculus, $T f$ is differentiable for every f.
No, the space of functions which vanish at $x=\frac{1}{2}$ is not invariant; for instance, if I let $f(x)=2 x-1$, then $f(x)$ is in this subspace. On the other hand, $(T f)(x)=x^{2}-x$, which is not.
(On the other hand, the space of functions which vanish at 0 is invariant.)

