
Mathematics 262
Homework 7 solutions

Assignment:

• Prove the Cayley-Hamilton theorem for upper triangular matrices: if A is upper triangular with
characteristic polynomial f(x), then f(A) = 0.

• Section 6.5: 1(b), 2, 4 (extra credit)

Cayley-Hamilton: In order to show that f(A) = 0, I will use induction on n. Every 1 × 1 matrix B
satisfies its characteristic polynomial (i.e., f(B) = 0), so that starts the induction. Now assume that
every (n − 1) × (n − 1) upper triangular matrix satisfies its characteristic polynomial. Let A be an
n × n upper triangular matrix with characteristic polynomial f(x). One way to show that f(A) = 0 is
to show that f(A)α = ~0 for every n-dimensional vector α. Even better, it’s good enough to show that
f(A)α = ~0 for every α in some basis. I’ll use the standard basis: the basis with respect to which A is
upper triangular. Call the basis elements ε1, ε2, . . . , εn.

I can also write down a formula for f(x): if the diagonal entries of A are c1, c2, . . . , cn, (these are not
necessarily distinct) then

f(x) = (x− c1)(x− c2) . . . (x− cn).

Because A is upper triangular, the subspace W spanned by ε1, . . . , εn−1 is invariant under A; therefore A
determines a linear operator B : W → W . The matrix for B is A with the last row and column deleted;
in particular, B is upper triangular. The characteristic polynomial for B is g(x) = (x− c1) . . . (x− cn−1),
and by induction, we know that g(B) = 0. In particular, g(B)εi = ~0 for all i ≤ n− 1.

Because of this, g(A)εi = ~0 for all i ≤ n − 1; since f(A) = (A − cnI)g(A), this means that f(A)εi = ~0
for all i ≥ n − 1. If we can show that f(A)εn = ~0, we will be finished. Because A is upper triangular
with Ann = cn, then (A− cnI)εn is a linear combination of ε1, . . . , εn−1. Therefore

f(A)εn = g(A)(A− cnI)εn

= g(A)(r1ε1 + · · ·+ rn−1εn−1)
= r1g(A)ε1 + · · ·+ rn−1g(A)εn−1

= ~0.

§6.5, #1(b): To find the invertible matrix P , I have to find a basis which consists of eigenvectors for
both A and B. A has eigenvalues 0 and 2, with corresponding eigenvectors (1,−1) and (1, 1). You can
easily check that these are also eigenvectors for B, with eigenvalues 1 − a and 1 + a, respectively. Now

let P =
[

1 1
−1 1

]
. Then P−1 = 1

2

[
1 −1
1 1

]
. One can check that P−1AP and P−1BP are diagonal (and,

of course, the diagonal entries are the eigenvalues of the matrices). Since eigenvalues are not unique, and
since they could have been chosen in either order, there are many correct answers here.

§6.5, #2: Since the matrices are defined over the complex numbers, they are all similar to triangular
matrices. Since they commute, they are simultaneously triangulable. So the question becomes, how
many linearly independent upper triangular matrices are there? Since the matrices are 3× 3 and upper
triangular, there are 6 possible nonzero entries; therefore, there are at most 6 linearly independent
matrices in F . In the n× n case, there are at most

n + (n− 1) + (n− 2) + · · ·+ 2 + 1 =
(

n + 1
2

)
=

n(n + 1)
2

such matrices.


