
Mathematics 262
Homework 8 solutions

Assignment:

• Section 8.1: 1, 3

• Section 8.2: 2, 3, 6, 9, 13, 17

§8.1, #1: (a) We have
(~0|β) = (~0−~0|β) = (~0|β)− (~0|β) = 0

(b) If (α|β) = 0 for all β ∈ V , then in particular, (α|α) = 0. Therefore α must be ~0.

§8.1, #3: I claim that any inner product on R (or on C) is determined by the value of (1|1). After all,
the inner product of two arbitrary numbers x and y must be (x|y) = xy(1|1) by the linearity properties
of the inner product. Because (x|x) must be positive whenever x is nonzero, then (1|1) must be a positive
real number. Hence every inner product on R (or on C) is of the form

(x|y) = xyc

for some positive real number c. Conversely, every positive c determines an inner product via this
formula.

§8.2, #2: Gram-Schmidt gives {(1, 0, 1), (1, 0,−1), (0, 3, 0)}, so normalizing (dividing each vector by its
norm) gives the following orthonormal basis: { 1√

2
(1, 0, 1), 1√

2
(1, 0,−1), (0, 1, 0)}.

§8.2, #3: Gram-Schmidt gives {(1, 0, i), 1
2 (1+i, 2, 1−i)}, so normalizing gives the following orthonormal

basis: { 1√
2
(1, 0, i), 1

2
√

2
(1 + i, 2, 1− i)}.

§8.2, #6: First, I’ll find an orthonormal basis for W . Since W is one-dimensional, this just corresponds
to normalizing the single basis vector: α = 1

5 (3, 4).

(a) The formula for orthogonal projection onto W is

E(x1, x2) = ((x1, x2) · α)α

=
1
5
(3x1 + 4x2)α

=
1
25

(9x1 + 12x2, 12x1 + 16x2).

(b) So the matrix for E is 1
25

[
9 12
12 16

]
.

(c) W⊥ is one-dimensional, so I just have to find one vector orthogonal to (3, 4). This is easy: (4,−3) is
an example, so W⊥ is the subspace spanned by (4,−3).

(d) Let β = 1
5 (4,−3). Then with respect to the orthonormal basis (α, β), the matrix for E is as desired.

§8.2, #9: (a) Suppose that g(t) = a0 +a1t+a2t
2 +a3t

3 is in the orthogonal complement of the subspace
of scalar polynomials. Then ∫ 1

0

cg(t)dt = c

∫ 1

0

g(t)dt = 0

for every scalar c. In particular,
∫ 1

0
g(t)dt = 0. We can evaluate this integral: it is a0 + a1

2 + a2
3 + a3

4 . So
the orthogonal complement is the subspace of all polynomials g(t) = a0 + a1t + a2t

2 + a3t
3 satisfying

a0 +
a1

2
+

a2

3
+

a3

4
= 0.



(b) Start with α0 = 1. This has norm 1. Then let

α1 = x− (x|α0)α0

= x− (
∫ 1

0

tdt)1

= x− 1
2
.

This has norm (
∫ 1

0
(t− 1

2 )2dt)
1
2 = 1√

12
. Then let

α2 = x2 − (x2|α1)
||α1||2

α1 − (x2|α0)α0

= x2 − x +
1
6
.

This has norm 1√
180

. Finally,

α3 = x3 − 3
2
x2 +

3
5
x− 1

20
.

§8.2, #13: It suffices to show that each element α in S is in (S⊥)⊥. By definition of S⊥, α is orthogonal
to every element in S⊥, and therefore α is in (S⊥)⊥.

Suppose that V is finite-dimensional, and let W be the subspace spanned by S. Then by one of our
theorems, V = W ⊕ W⊥, and W⊥ is equal to S⊥, so V = W ⊕ S⊥. If we apply the theorem to S⊥,
then we find that V = S⊥ ⊕ (S⊥)⊥. Counting dimensions, we find that dimW = dim(S⊥)⊥; since
W ⊆ (S⊥)⊥, then these two subspaces must be equal.

§8.2, #17: I would guess that the even functions (functions g(t) satisfying g(t) = g(−t) for all t) would
be the orthogonal complement. Let’s see what happens.

If f(t) is odd and g(t) is even, then f(t)g(t) is odd, so

(f |g) =
∫ 1

−1

f(t)g(t)dt = 0.

Therefore the subspace of even functions is contained in W⊥.

Let h(t) be any function. Then the formula

h(t) =
1
2
(h(t) + h(−t)) +

1
2
(h(t)− h(−t))

displays h(t) as being a sum of an even function and an odd function. For shorthand, write h(t) =
g(t) + f(t), where g(t) is even and f(t) is odd. If h(t) ∈ W⊥, then (h|f) = 0. But (h|f) = (g|f) + (f |f).
(g|f) = 0 because g is even and f is odd. So if h ∈ W⊥, with h = g + f , then (f |f) = 0, hence f(t) = 0,
and hence h = g. In other words, if h(t) is in W⊥, then h(t) is even. Therefore, W⊥ is contained in the
subspace of even functions.

Therefore W⊥ is equal to the subspace of even functions.

(Alternatively, the formula h = g+f shows that V is the sum of the subspaces of even and odd functions.
The only function that is both even and odd is the zero function, and therefore this is actually a direct
sum: V = W ⊕W ′, where W ′ is the subspace of even functions. We showed that W⊥ ⊇ W ′; this direct
sum decomposition shows that W⊥ ⊆ W ′. Therefore W⊥ = W ′.)


