Mathematics 262

Homework 8 solutions

Assignment:

- Section 8.1: 1, 3
- Section 8.2: 2, 3, 6, 9, 13, 17
§8.1, \#1: (a) We have

$$
(\overrightarrow{0} \mid \beta)=(\overrightarrow{0}-\overrightarrow{0} \mid \beta)=(\overrightarrow{0} \mid \beta)-(\overrightarrow{0} \mid \beta)=0
$$

(b) If $(\alpha \mid \beta)=0$ for all $\beta \in V$, then in particular, $(\alpha \mid \alpha)=0$. Therefore α must be $\overrightarrow{0}$.
$\S 8.1, \# 3$: I claim that any inner product on \mathbf{R} (or on \mathbf{C}) is determined by the value of (1|1). After all, the inner product of two arbitrary numbers x and y must be $(x \mid y)=x \bar{y}(1 \mid 1)$ by the linearity properties of the inner product. Because $(x \mid x)$ must be positive whenever x is nonzero, then $(1 \mid 1)$ must be a positive real number. Hence every inner product on \mathbf{R} (or on \mathbf{C}) is of the form

$$
(x \mid y)=x \bar{y} c
$$

for some positive real number c. Conversely, every positive c determines an inner product via this formula.
§8.2, \#2: Gram-Schmidt gives $\{(1,0,1),(1,0,-1),(0,3,0)\}$, so normalizing (dividing each vector by its norm) gives the following orthonormal basis: $\left\{\frac{1}{\sqrt{2}}(1,0,1), \frac{1}{\sqrt{2}}(1,0,-1),(0,1,0)\right\}$.
§8.2, \#3: Gram-Schmidt gives $\left\{(1,0, i), \frac{1}{2}(1+i, 2,1-i)\right\}$, so normalizing gives the following orthonormal basis: $\left\{\frac{1}{\sqrt{2}}(1,0, i), \frac{1}{2 \sqrt{2}}(1+i, 2,1-i)\right\}$.
§8.2, \#6: First, I'll find an orthonormal basis for W. Since W is one-dimensional, this just corresponds to normalizing the single basis vector: $\alpha=\frac{1}{5}(3,4)$.
(a) The formula for orthogonal projection onto W is

$$
\begin{aligned}
E\left(x_{1}, x_{2}\right) & =\left(\left(x_{1}, x_{2}\right) \cdot \alpha\right) \alpha \\
& =\frac{1}{5}\left(3 x_{1}+4 x_{2}\right) \alpha \\
& =\frac{1}{25}\left(9 x_{1}+12 x_{2}, 12 x_{1}+16 x_{2}\right)
\end{aligned}
$$

(b) So the matrix for E is $\frac{1}{25}\left[\begin{array}{cc}9 & 12 \\ 12 & 16\end{array}\right]$.
(c) W^{\perp} is one-dimensional, so I just have to find one vector orthogonal to $(3,4)$. This is easy: $(4,-3)$ is an example, so W^{\perp} is the subspace spanned by $(4,-3)$.
(d) Let $\beta=\frac{1}{5}(4,-3)$. Then with respect to the orthonormal basis (α, β), the matrix for E is as desired.
$\S 8.2, \# 9$: (a) Suppose that $g(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}$ is in the orthogonal complement of the subspace of scalar polynomials. Then

$$
\int_{0}^{1} c g(t) d t=c \int_{0}^{1} g(t) d t=0
$$

for every scalar c. In particular, $\int_{0}^{1} g(t) d t=0$. We can evaluate this integral: it is $a_{0}+\frac{a_{1}}{2}+\frac{a_{2}}{3}+\frac{a_{3}}{4}$. So the orthogonal complement is the subspace of all polynomials $g(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}$ satisfying

$$
a_{0}+\frac{a_{1}}{2}+\frac{a_{2}}{3}+\frac{a_{3}}{4}=0
$$

(b) Start with $\alpha_{0}=1$. This has norm 1. Then let

$$
\begin{aligned}
\alpha_{1} & =x-\left(x \mid \alpha_{0}\right) \alpha_{0} \\
& =x-\left(\int_{0}^{1} t d t\right) 1 \\
& =x-\frac{1}{2}
\end{aligned}
$$

This has norm $\left(\int_{0}^{1}\left(t-\frac{1}{2}\right)^{2} d t\right)^{\frac{1}{2}}=\frac{1}{\sqrt{12}}$. Then let

$$
\begin{aligned}
\alpha_{2} & =x^{2}-\frac{\left(x^{2} \mid \alpha_{1}\right)}{\left\|\alpha_{1}\right\|^{2}} \alpha_{1}-\left(x^{2} \mid \alpha_{0}\right) \alpha_{0} \\
& =x^{2}-x+\frac{1}{6}
\end{aligned}
$$

This has norm $\frac{1}{\sqrt{180}}$. Finally,

$$
\alpha_{3}=x^{3}-\frac{3}{2} x^{2}+\frac{3}{5} x-\frac{1}{20}
$$

$\S 8.2, \# 13$: It suffices to show that each element α in S is in $\left(S^{\perp}\right)^{\perp}$. By definition of S^{\perp}, α is orthogonal to every element in S^{\perp}, and therefore α is in $\left(S^{\perp}\right)^{\perp}$.

Suppose that V is finite-dimensional, and let W be the subspace spanned by S. Then by one of our theorems, $V=W \oplus W^{\perp}$, and W^{\perp} is equal to S^{\perp}, so $V=W \oplus S^{\perp}$. If we apply the theorem to S^{\perp}, then we find that $V=S^{\perp} \oplus\left(S^{\perp}\right)^{\perp}$. Counting dimensions, we find that $\operatorname{dim} W=\operatorname{dim}\left(S^{\perp}\right)^{\perp}$; since $W \subseteq\left(S^{\perp}\right)^{\perp}$, then these two subspaces must be equal.
$\S 8.2, \# 17$: I would guess that the even functions (functions $g(t)$ satisfying $g(t)=g(-t)$ for all t) would be the orthogonal complement. Let's see what happens.
If $f(t)$ is odd and $g(t)$ is even, then $f(t) g(t)$ is odd, so

$$
(f \mid g)=\int_{-1}^{1} f(t) g(t) d t=0
$$

Therefore the subspace of even functions is contained in W^{\perp}.
Let $h(t)$ be any function. Then the formula

$$
h(t)=\frac{1}{2}(h(t)+h(-t))+\frac{1}{2}(h(t)-h(-t))
$$

displays $h(t)$ as being a sum of an even function and an odd function. For shorthand, write $h(t)=$ $g(t)+f(t)$, where $g(t)$ is even and $f(t)$ is odd. If $h(t) \in W^{\perp}$, then $(h \mid f)=0$. But $(h \mid f)=(g \mid f)+(f \mid f)$. $(g \mid f)=0$ because g is even and f is odd. So if $h \in W^{\perp}$, with $h=g+f$, then $(f \mid f)=0$, hence $f(t)=0$, and hence $h=g$. In other words, if $h(t)$ is in W^{\perp}, then $h(t)$ is even. Therefore, W^{\perp} is contained in the subspace of even functions.
Therefore W^{\perp} is equal to the subspace of even functions.
(Alternatively, the formula $h=g+f$ shows that V is the sum of the subspaces of even and odd functions. The only function that is both even and odd is the zero function, and therefore this is actually a direct sum: $V=W \oplus W^{\prime}$, where W^{\prime} is the subspace of even functions. We showed that $W^{\perp} \supseteq W^{\prime}$; this direct sum decomposition shows that $W^{\perp} \subseteq W^{\prime}$. Therefore $W^{\perp}=W^{\prime}$.)

