Mathematics 262

Homework 9 solutions

Assignment:

- Section 8.3: 2, 5, 9, 12
§8.3, \#2: Since I know what T does to the standard basis vectors, I can write down its matrix: $A=\left[\begin{array}{cc}1+i & i \\ 2 & i\end{array}\right]$. Since the standard basis is orthonormal, then the matrix for T^{*} is the conjugate transpose of this: $A^{*}=\left[\begin{array}{cc}1-i & 2 \\ -i & -i\end{array}\right]$. To check whether T commutes with T^{*}, just compute $A A^{*}$ and $A^{*} A$, and see if they're the same. I think the results are:

$$
A A^{*}=\left[\begin{array}{cc}
3 & 3+2 i \\
3-2 i & 5
\end{array}\right], \quad \quad A^{*} A=\left[\begin{array}{cc}
6 & 1+3 i \\
1-3 i & 2
\end{array}\right]
$$

So they don't commute. (If you'd rather work with linear operators, you can evaluate $T T^{*}\left(\varepsilon_{j}\right)$ and $T^{*} T\left(\varepsilon_{j}\right)$ for $j=1,2$, and see if you get the same thing.)
$\S 8.3, \# 5$: The easiest thing to do is to use the properties of the adjoint: if T is invertible, then $I=T T^{-1}$. Take the adjoint of both sides, and use the fact that $I^{*}=I$:

$$
I=I^{*}=\left(T T^{-1}\right)^{*}=\left(T^{-1}\right)^{*} T^{*}
$$

Similarly, the equation $I=T^{-1} T$ yields $I=T^{*}\left(T^{-1}\right)^{*}$. Therefore the operator T^{*} is invertible, because I have found its inverse: $\left(T^{-1}\right)^{*}$. (A linear transformation U is invertible if and only if there is another linear transformation S so that $S U=I$ and $U S=I$.)
§8.3, \#9: I know that if I can find the matrix for D with respect to an orthonormal basis, then it's easy to get the matrix for D^{*}. Fortunately, as part of a previous assignment, I know such a basis. Actually, the previous assignment gives an orthogonal basis, so I find the norm of each basis vector and divide by it to get the following orthonormal basis:

$$
\begin{aligned}
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) & =\left(1,2 \sqrt{3}\left(x-\frac{1}{2}\right), 6 \sqrt{5}\left(x^{2}-x+\frac{1}{6}\right), 20 \sqrt{7}\left(x^{3}-\frac{3}{2} x^{2}+\frac{3}{5} x-\frac{1}{20}\right)\right) \\
& =\left(1, \sqrt{3}(2 x-1), \sqrt{5}\left(6 x^{2}-6 x+1\right), \sqrt{7}\left(20 x^{3}-30 x^{2}+12 x-1\right)\right)
\end{aligned}
$$

To compute the matrix for D, I apply D to each basis element and expand the result in terms of this basis; in other words, as we saw in class, the (i, j)-entry of the matrix for D is $\left(D \alpha_{j} \mid \alpha_{i}\right)=\int_{0}^{1} \frac{d \alpha_{j}}{d t} \alpha_{i} d t$.

$$
\begin{aligned}
D\left(\alpha_{1}\right) & =D(1)=0 . \\
D\left(\alpha_{2}\right) & =2 \sqrt{3} D\left(x-\frac{1}{2}\right)=2 \sqrt{3}=2 \sqrt{3} \alpha_{1} . \\
D\left(\alpha_{3}\right) & =6 \sqrt{5} D\left(x^{2}-x+\frac{1}{6}\right)=6 \sqrt{5}(2 x-1)=2 \sqrt{15}\left(\alpha_{2}\right) . \\
D\left(\alpha_{4}\right) & =20 \sqrt{7} D\left(x^{3}-\frac{3}{2} x^{2}+\frac{3}{5} x-\frac{1}{20}\right) \\
& =20 \sqrt{7}\left(3 x^{2}-3 x+\frac{3}{5}\right) \\
& =20 \sqrt{7}\left(3\left(x^{2}-x+\frac{1}{6}\right)-\frac{1}{2}+\frac{3}{5}\right) \\
& =20 \sqrt{7}\left(3 \alpha_{3}+\frac{1}{10} \alpha_{1}\right) \\
& =2 \sqrt{35} \alpha_{3}+2 \sqrt{7} \alpha_{1} .
\end{aligned}
$$

So the matrix for D is

$$
\left[\begin{array}{cccc}
0 & 2 \sqrt{3} & 0 & 2 \sqrt{7} \\
0 & 0 & 2 \sqrt{15} & 0 \\
0 & 0 & 0 & 2 \sqrt{35} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the matrix for D^{*} is the conjugate transpose of this, or actually just the transpose, since we are working with real numbers:

$$
\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
2 \sqrt{3} & 0 & 0 & 0 \\
0 & 2 \sqrt{15} & 0 & 0 \\
2 \sqrt{7} & 0 & 2 \sqrt{35} & 0
\end{array}\right] .
$$

For example,

$$
D^{*}(1)=D^{*}\left(\alpha_{1}\right)=2 \sqrt{3} \alpha_{2}+2 \sqrt{7} \alpha_{4}=280 x^{3}-420 x^{2}+180 x-20
$$

§8.3, \#12: If T is self-adjoint, then $(T \alpha \mid \beta)=(\underline{\alpha \mid T \beta)}$ for all α, β. In particular, $(T \alpha \mid \alpha)=(\alpha \mid T \alpha)$. On the other hand, by switching factors, $(\alpha \mid T \alpha)=\overline{(T \alpha \mid \alpha)}$. We conclude that $(T \alpha \mid \alpha)=\overline{(T \alpha \mid \alpha)}$ for all α, and therefore $(T \alpha \mid \alpha)$ is real for all α.

Suppose, conversely, that $(T \alpha \mid \alpha)$ is real for all α. I want to show that for all α and β,

$$
(T \alpha \mid \beta)=(\alpha \mid T \beta)
$$

I'll do this in sort of a roundabout way. Let z be a complex number, and consider

$$
(T(\alpha+z \beta) \mid \alpha+z \beta)=(T \alpha \mid \alpha)+\bar{z}(T \alpha \mid \beta)+z(T \beta \mid \alpha)+|z|^{2}(T \beta \mid \beta)
$$

This is a real number (by assumption, using $\alpha+z \beta$ instead of α), as are (T $T \alpha$) and $|z|^{2}(T \beta \mid \beta)$. (Recall that $|z|^{2}=z \bar{z}$ is always a real number.) Therefore $\bar{z}(T \alpha \mid \beta)+z(T \beta \mid \alpha)$ is real for every complex number z. I claim that this implies that $(T \alpha \mid \beta)=\overline{(T \beta \mid \alpha)}$. If I can verify the claim, then

$$
(T \alpha \mid \beta)=\overline{(T \beta \mid \alpha)}=(\alpha \mid T \beta)
$$

as desired.
I have two complex numbers, $r=(T \alpha \mid \beta)$ and $s=(T \beta \mid \alpha)$, and I know that for every complex number z, $\bar{z} r+z s$ is a real number. I want to show that $r=\bar{s}$. (The idea is that $\overline{z s}+z s$ is real, and $r=\bar{s}$ should be the only solution that works for every z.) This is pretty easy: let $r=a+b i$, and let $s=c+d i$. I want to show that $a=c$ and $b=-d$. When $z=1$, I have

$$
\bar{z} r+z s=r+s=(a+c)+i(b+d)
$$

Since this is a real number, then $b=-d$. When $z=i$,

$$
\bar{z} r+z s=-i r+i s=-i a+b+i c-d=(b-d)+i(c-a)
$$

Since this is a real number, then $a=c$. This finishes the claim, and hence the problem.
(Alternatively, if I know that $\bar{z} r+z s$ is real for every complex number z, then it is equal to its complex conjugate. For $z=1$ and $z=i$, this gives:

$$
\begin{gathered}
r+s=\bar{r}+\bar{s} \\
-i r+i s=i \bar{r}-i \bar{s}
\end{gathered}
$$

Multiply the second equation by i :

$$
r-s=-\bar{r}+\bar{s}
$$

Now add it to the first equation:

$$
2 r=2 \bar{s}
$$

Dividing by 2 gives the desired result.)

