Exam 1
 Friday the 13th (of February)

General instructions: You may not use calculators. Unless otherwise specified, treat all matrices (etc.) as being defined over the real numbers \mathbf{R}. You may use any result from class or from the homework, if you want to. If I ask a question about $n \times n$ matrices and you're not sure how to do it, you will get partial credit if you just work on the 2×2 case or the 3×3 case. (You might even get a tiny bit of credit for the 1×1 case.)

Short answer

(5) 1. Give a formula for the determinant of an $n \times n$ matrix.
(5) 2. Suppose that T is a linear operator on an n-dimensional vector space. Give the definition of an eigenvalue of T.
(5) 3. Describe Cramer's rule.

True or false: For the next two problems, tell me whether each statement is true or false. If it's true, give a brief reason why. If it's false, give a counterexample.
(10) 4. If A is an $n \times n$ matrix with rank less than n, then 0 is an eigenvalue of A.
5. For $n \times n$ matrices A and $B \operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.

Computations

(10) 6. (a) Compute the determinant of $\left[\begin{array}{cccc}1 & -2 & 3 & -4 \\ 5 & 6 & -7 & -8 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 3 & 4\end{array}\right]$.
(b) Compute the inverse of $\left[\begin{array}{ccc}3 & 0 & 0 \\ -5 & -2 & 0 \\ 4 & 0 & 1\end{array}\right]$.
7. Find the eigenvalues of the following matrices, and for each eigenvalue, find a basis for the corresponding eigenspace. Is each matrix diagonalizable? (Give a brief reason.)
(a) $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 2\end{array}\right]$
(b) $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ (Your answer may depend on θ.)

Theory

(15) 8. (a) Suppose that A is a 2×2 matrix of real numbers which is symmetric (i.e., $A=A^{t}$). Prove that A is similar to a diagonal matrix.
(b) (extra credit) Can you extend this result to 3×3 symmetric matrices, or in general to $n \times n$ symmetric matrices?
(10) 9. (a) Let A be an $n \times n$ matrix with characteristic polynomial

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} .
$$

What is the constant term a_{0}, in terms of A ? (Hint: plug $x=0$ into the characteristic polynomial.)
(b) (extra credit) Can you express the coefficient a_{n-1} of x^{n-1} in a similar way? What about the other coefficients?

