Math 262

Spring 1999
Test 1

1. Write an essay about $F[X]$, the ring of polynomials with coefficients in the field F.
2. Prove that a real 2×2 symmetric matrix is diagonalizable.
3. Let N be a 2×2 complex matrix, $N^{2}=0$. Prove that either $N=0$ or N is similar to $\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$.

Hint: If $N \neq 0$ then dim ker $N=1$ (why?). Look at the effect of N on a basis $\{\alpha, \beta\}$ with $\beta \in \operatorname{ker} N$.
4. Any 2×2 complex matrix A is either diagonalizable or A is similar to a matrix of the form $\left[\begin{array}{ll}a & 0 \\ 1 & a\end{array}\right]$

Hint: In case the eigenvalues of A are equal to c, show that the eigenvalues of $N=A-c I$ are all zero. Conclude that N is nilpotent and use problem 3.

