Math 262 Spring 1999 Test 1

- 1. Write an essay about F[X], the ring of polynomials with coefficients in the field F.
- 2. Prove that a real 2×2 symmetric matrix is diagonalizable.
- 3. Let N be a 2×2 complex matrix, $N^2 = 0$. Prove that either N = 0 or N is similar to $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$.

Hint: If $N \neq 0$ then $\dim \ker N = 1$ (why?). Look at the effect of N on a basis $\{\alpha, \beta\}$ with $\beta \in \ker N$.

4. Any 2×2 complex matrix A is either diagonalizable or A is similar to a matrix of the form $\begin{bmatrix} a & 0 \\ 1 & a \end{bmatrix}$

Hint: In case the eigenvalues of A are equal to c, show that the eigenvalues of N=A-cI are all zero. Conclude that N is nilpotent and use problem 3.