ath 262 - Linear Algebra

Spring 2000 (Exam 1)

1) Define $\operatorname{det} A$ and state the basic properties of the function $\operatorname{det}: M_{n \times n}(F) \rightarrow F$.
2) Let $N \in M_{n \times n}(F)$ be similar to an upper triangular matrix whose main diagonal consists entirely of zeros. Show that $I+N$ is invertible.
3) A matrix $A \in M_{n \times n}(F)$ is said to have a square root if there exists a matrix $X \in M_{n \times n}(F)$ such that $X^{2}=A$.
a) Show that if $F=\mathbb{R}$ and n is odd then $A=-I$ does not have a square root.
b) Find a square root of $A=-I$ when $F=\mathbb{R}$ and $n=2$.
4) Consider the linear operator $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T(x, y, z)=(x, x+2 y+3 z, x+2 z)$.
a) Write down the characteristic polynomial of T.
b) Find the eigenvalues of T.
c) Describe the eigenspace of T correponding to the double eigenvalue.
d) Is T diagonalizable? Explain.
