ath 262 - Linear Algebra

Spring 2000 (Exam 2)

1) Let $T: V \rightarrow V$ be a linear operator, where V is a finite-dimensional complex-vector space. Show that there exists a basis of V with respect to which the matrix of T is upper triangular.
2) Show by means of an example that the conclusion in problem 1 may fail if V is a real vector space.
3) Consider the operator $T: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ given by

$$
T\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(z_{1}+i z_{2}+z_{3}+z_{4}, z_{2}, z_{2}+3 z_{4}, z_{2}+4 z_{4}\right) .
$$

Is T diagonalizable? What is the minimal polynomial of T ?
4) Linear operators on a complex infinite - dimensional vector space need not have eigenvalues. Check that the operator below is a suitable example: $V=$ space of all continuous functions f : $[0,1] \rightarrow \mathbb{C}, T: V \rightarrow V, T f=g f$, where g is a fixed function in V with the property that g is non-constant on every open subinterval of $[0,1]$.

