ath 262 - Linear Algebra

Spring 2000 (Final Exam)

1) Prove the parallelogram law on an inner product space V; that is, show that for all vectors x and y in V

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} .
$$

What does this equation say about parallelograms in \mathbb{R}^{2} ?
2) Consider the space $M_{n \times n}(\mathbb{R})$ of all $n \times n$ real matrices endowed with the inner product $\langle A, B\rangle=$ trace of $B^{*} A$. Consider the subset W of $M_{n \times n}(\mathbb{R})$ consisting of those matrices of zero trace. Show that W is a subspace of dimension $n^{2}-1$ and find its orthogonal complement.
3) Give examples of:
a) a 3×3 nilpotent matrix of rank 2 .
b) A 9×9 matrix in Jordan form with three Jordan blocks and a double eigenvalue.
4) Let N be a nilpotent $n \times n$ matrix. Show that the matrix $I-N$ is invertible (you may either use determinants or look at the power series expansion about $x=0$ of the function $(1-x)^{-1}$ for inspiration).
5) let V be a 14 -dimensional vector space, W_{1}, W_{2} subspaces of dimensions 8 and 10 , repectively. What are the possibilities for the dimension of $W_{1} \cap W_{2}$?
6) a) Give the definition of the minimal polynomial associated to an operator. b) Formulate and prove a criterion for an operator on a finite - dimensional vector space to be triangulable.

