ath 262 – Linear Algebra

Spring 2000 (Final Exam)

1) Prove the $parallelogram\ law$ on an inner product space V; that is, show that for all vectors x and y in V

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$

What does this equation say about parallelograms in \mathbb{R}^2 ?

- 2) Consider the space $M_{n\times n}(\mathbb{R})$ of all $n\times n$ real matrices endowed with the inner product $\langle A,B\rangle$ = trace of B^*A . Consider the subset W of $M_{n\times n}(\mathbb{R})$ consisting of those matrices of zero trace. Show that W is a subspace of dimension n^2-1 and find its orthogonal complement.
- 3) Give examples of:
- a) a 3×3 nilpotent matrix of rank 2.
- b) A 9×9 matrix in Jordan form with three Jordan blocks and a double eigenvalue.
- 4) Let N be a nilpotent $n \times n$ matrix. Show that the matrix I N is invertible (you may either use determinants or look at the power series expansion about x = 0 of the function $(1 x)^{-1}$ for inspiration).
- 5) let V be a 14-dimensional vector space, W_1 , W_2 subspaces of dimensions 8 and 10, repectively. What are the possibilities for the dimension of $W_1 \cap W_2$?
- 6) a) Give the definition of the minimal polynomial associated to an operator. b) Formulate and prove a criterion for an operator on a finite dimensional vector space to be triangulable.