## Math 262 - Linear Algebra Spring 2001 (Exam 1)

1. (25 points) Find a $3 \times 3$ matrix $A$ over the reals so that (i)-(iii) below all hold:
(i) 1 is an eigenvalue of $A$, with eigenvector $(0,0,1)$,
(ii) 5 is an eigenvalue of $A$, with eigenvector $\left(\frac{3}{5}, \frac{4}{5}, 0\right)$, and
(iii) -10 is an eigenvalue of $A$, with eigenvector $\left(\frac{4}{5},-\frac{3}{5}, 0\right)$.
2. (25 points) Consider the linear operator $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T(x, y, z)=(x, x+2 y+3 z, x+2 z) .
$$

a) Write down the matrix (with respect to the standard ordered basis) of $T$ and determine the characteristic polynomial of $T$.
b) Find the eigenvalues of $T$.
c) Find a basis for the eigenspace of $T$ corresponding to the double eigenvalue.
d) Is $T$ diagonalizable? Explain.
3. (25 points) Prove the parallelogram law on an inner product space $V$; that is, show that for all vectors $x$ and $y$ in $V$

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} .
$$

What does this equality say about parallelograms in $\mathbb{R}^{2}$ ?
4. (25 points) Consider the real inner product space $V$ consisting of polynomials of degree at most two over the real numbers with inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$.
a) Apply the Gram-Schmidt process to the ordered set of vectors $X=\left\{x, x^{2}\right\}$ in $V$. Write down an orthonormal basis for the span $W$ of $X$.
b) Determine the orthogonal projection of the constant function 1 on $W$.
c) Find a basis for the orthogonal complement $W^{\perp}$ of $W$.

