Math 262, Spring 2001; Final Exam

This is a closed book exam. Calculators may be used. All working must be shown to receive full points.

1. (25 points) Consider the following 2×2 matrices A, B, C, D over the real numbers:

$$
A=\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right), \quad C=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right), \quad D=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) .
$$

a) Which of the matrices $A-D$ are orthogonally similar over the real numbers to a diagonal matrix?
b) Which of the matrices $A-D$ are unitarily similar over the complex numbers to a diagonal matrix?
c) Which of the matrices $A-D$ are similar over the complex numbers to a diagonal matrix?
2. (25 points) Prove that for any vectors x, y in a real inner product space V,

$$
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)
$$

What does this tell you about a parallelogram in $\mathbf{R}^{\mathbf{2}}$ for which the two diagonals are of equal length?
3. (25 points) Consider the space $M_{n \times n}(\mathbf{R})$ of all $n \times n$ real matrices endowed with the inner product $\langle A, B\rangle=$ trace of $B^{*} A$ (you may assume that this is an inner product). Consider the subset W of $M_{n \times n}(\mathbf{R})$ consisting of those matrices of zero trace. Show that W is a subspace of dimension $n^{2}-1$ and find its orthogonal complement.
4. (25 points) a) A linear operator T on a 7 dimensional complex vector space V satisfies the following conditions: $\operatorname{rank}(T+2)=5, \operatorname{rank}\left((T+2)^{2}\right)=3, \operatorname{rank}\left((T+2)^{3}\right)=2$, $\operatorname{rank}(T-3)=6$, and $\operatorname{rank}\left((T-3)^{2}\right)=5$. Write down the Jordan canonical form of T.
b) Write down the possible Jordan canonical forms of a linear operator S on V with characteristic polynomial $-(t-2)^{4} t^{3}$ and minimal polynomial $(t-2)^{2} t^{2}$.
5. (25 points) A linear operator N is called nilpotent if $N^{m}=0$ for some $m>0$.
a) Show that a nilpotent operator N on a finite-dimensional space V has a Jordan canonical form.
b) Show that $\mathrm{Id}_{V}-N$ is invertible if N is nilpotent.
6. (25 points) a) Let $p(t)$ denote the minimal polynomial of a linear operator T on a finitedimensional vector space over a field F. If $q(t) \in F[t]$ is a polynomial with $q(T)=T_{0}$ (the zero operator), what is the relation between $p(t)$ and $q(t)$?
b) State necessary and sufficient conditions in terms of $p(t)$ for diagonalizability of T.
c) Suppose that $A \in \operatorname{Mat}_{n \times n}(\mathbf{C})$ satisfies $A^{m}=\operatorname{Id}_{n}$ for some $m \geq 1$. Use (a) and (b) to show that A is similar to a diagonal matrix.
d) Give an example of a matrix $B \in \operatorname{Mat}_{2 \times 2}\left(\mathbf{Z}_{2}\right)$ satisfying $B^{2}=\mathrm{Id}_{2}$ but such that B is not similar to a diagonal matrix.

