$=4$ Math $323 \quad$ Test 3 April 6,1994
The random variables X_{1} and X_{2} have joint density function

$$
f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cl}
24 x_{2} & \text { if } 0 \leq x_{2} \leq x_{1} \leq 1 \text { and } x_{1}+x_{2} \leq 1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Find the marginal density function $f_{2}\left(x_{2}\right)$.
$24\left(x_{2}-2 x_{2}^{2}\right) 24\left(x_{2}-x_{2}^{2}\right) 24\left(x_{2}+2 x_{2}^{2}\right) 24\left(x_{2}+x_{2}^{2}\right) 24\left(\frac{1}{2}-x_{2}+x_{2}^{2}\right)$ 1:bcaed 2:acebd 3:dbcea 4:cadbe
For X_{1} and X_{2} of problem 1, find the marginal density function $f_{1}\left(x_{1}\right) .12\left(\frac{1}{2}-x_{1}+x_{1}{ }^{2}-\left|x_{1}-\frac{1}{2}\right|\right)$ $24\left(x_{1}-2 x_{1}^{2}\right) 24\left(-x_{1}+x_{1}^{2}\right) 24\left(\frac{1}{2}-x_{1}-x_{1}^{2}\right) 24\left(\frac{1}{2}+x_{1}+x_{1}^{2}\right)$ 1:cbdae 2:bdaec 3:daecb 4:aecbd

Let X_{1} and X_{2} have a uniform joint probability function given by

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\frac{1}{2} & \text { if } 0 \leq x_{1} \leq 2 \text { and } 0 \leq x_{2} \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

Determine the probability $P\left(X_{1}+X_{2} \leq 1\right) . \frac{1}{4} \frac{1}{8} \frac{1}{3} \frac{1}{2} \frac{3}{8} 1$:abcde 2 :acebd 3 :cbaed 4 :cadbe
Two telephone calls come independently into a switchboard, and at random times in a fixed 1-hour period. What is the probability that they arrive within 10 minutes of each other? $\frac{11}{36} \quad \frac{21}{36} \frac{13}{36} \frac{15}{36} \quad \frac{25}{36}$

1:acbed 2:cbeda 3:bedac 4:adbec
The standard normal variable Z has $e^{\frac{t^{2}}{2}}$ as its moment-generating function. Using this information, compute $\operatorname{Var}\left(Z^{2}\right)$.

23145 1:baced 2:acedb 3:cedba 4:edbac
Let X be normally distributed with $\mu=600$ and $\sigma=30$. Compute $P(X>660)$. . 0228 . 4772 . 9772 .5228 . 0013 1:cbade 2:badec 3:adecb 4:decba

Professor Stern just gave a mathematics test to his students. The scores are normally distributed with a mean of 75 and a standard deviation of 16 . What should the lowest passing grade be so that 10% of the class fails the test? 5560525862 1:bdaec 2:daecb 3:aecbd 4:ecbda

Certain steel beams have yield strengths (measured in thousands of pounds per square inch) which follow a Weibull distribution with $\gamma=2$ and $\theta=4,000$. A construction project uses two such beams and calls for a yield strength in excess of $70,000 \mathrm{psi}$. What is the probability that both beams meet the specifications for the project? . 086 . 590. 228 . 387 . 291 1:edcba 2:daecb 3:aecbd 4:ecbda

A random variable X has a beta distribution with $\alpha=3$ and $\beta=1$. Find $P\left(X>\frac{1}{2}\right) . \frac{7}{8} \frac{15}{16} \frac{5}{8} \frac{13}{16} \frac{7}{16}$ 1:abcde 2:bcdea 3:cdeab 4:deabc

Let X be exponential with density function $\frac{1}{2} e^{\frac{-x}{2}}$ for $x>0$. Find the moment-gemerating function of X. $(1-2 t)^{-1}(2-t)^{-1}(1-t)^{-2}(2 t-1)^{-1}(t-2)^{-2}$ 1:bacde 2:acdeb 3:cdeba 4:debac

Illustrate the usefulness of the integration formula $\int_{0}^{\infty} x^{n} e^{\frac{-x}{\theta}} d x=\Gamma(n+1) \theta^{n+1}$ by computing $E\left[X^{3}\right]$ where X is a gamma random variable with $\alpha=2$ and $\beta=4$.
$1536 \frac{1}{14} 245767680 \frac{1}{64}$ 1:baecd 2:aecdb 3:ecdba 4:cdbae
The joint probability function for the discrete random variables X_{1} and X_{2} is 0 everywhere except for the four points $(1,1),(1,2),(2,1)$, and $(2,2)$. At $(2,2), p(2,2)=\frac{5}{8}$ and $p(1,1)=p(1,2)=p(2,1)=\frac{1}{8}$. Find the expected value $E\left[X_{1} X_{2}\right]$ of the product $X_{1} X_{2}$.
$\frac{25}{8} \quad \frac{9}{8} \quad \frac{28}{8} \quad \frac{17}{8} \quad \frac{13}{8} 1$:ecbda 2:bdaec 3:dabce 4:dabce
Let the joint density function of X_{1} and X_{2} be given by $f\left(x_{1}, x_{2}\right)=2 x_{1}$ for points $\left(x_{1}, x_{2}\right)$ in the unit square and $f\left(x_{1}, x_{2}\right)=0$ elsewhere. Find the probability

$$
P\left(\left.X_{2} \leq \frac{1}{8} \right\rvert\, X_{1} \leq \frac{1}{4}\right)
$$

$\frac{1}{8} \frac{1}{4} \frac{1}{3} \frac{3}{8} 01$ 1:baecd 2:cdbae 3:dbaec 4:ecdba
For X_{1} and X_{2} of problem 13, find $P\left(\left.X_{2} \leq \frac{1}{8} \right\rvert\, X_{1}=\frac{1}{4}\right) . \frac{1}{8} \frac{1}{4} \frac{1}{2} \frac{1}{16} \frac{3}{16} 1$:ecbad 2:decba 3:ecbad 4:cbade
Are the random variables X_{1} and X_{2} of problems 13 and 14 independent or not independent?
independent not independent don't choose this don't choose this don't choose this 1:cbeda 2 :edacb 3:dacbe 4:cbeda

The table below gives the joint probability function for the discrete random variables X_{1} and X_{2}. Use it to find $P\left(X_{1} \leq 1 \mid X_{2}=1\right)$.
$\frac{27}{45} \frac{9}{28} \quad \frac{2}{7} \quad \frac{3}{14} \frac{10}{21} 1$:cdeab 2:cdeab 3:deabc 4:deabc

