$=4$ Math $323 \quad$ Final Examination May 5,1994
Let X be a uniform random variable on the interval [-3,3]. For $U=X^{2}+1$ and for $1 \leq u \leq 10$, we have the density function $f_{U}(u)$, given by
$\frac{1}{6 \sqrt{u-1}} \frac{1}{12 \sqrt{u-1}} \frac{1}{6 \sqrt{u^{2}+1}} \frac{1}{12 \sqrt{u^{2}+1}} \frac{1}{18 \sqrt{u-1}}$ 1: bcaed 2:acebd 3:dbcea 4:cadbe
Let X_{1} and X_{2} have joint density function

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}1 & \text { if } 0 \leq x_{1} \leq 1 \text { and } 0 \leq x_{2} \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

For the function $U=X_{1} X_{2}$ find the density function $f_{U}(u)$ where $0 \leq u \leq 1$.
$-\ln u-u(\ln u)-2 u(\ln u) u-u(\ln u) u-\ln u 1:$ cbdae 2:bdaec 3:daecb 4:aecbd
A restaurant has found that 40% of its customers order chicken, 20% order beef and 40% order fish. A table of 8 customers is about to order. What is the probability that 2 order chicken, 3 order beef and 3 order fish? . 046 . 027 . 083 . 066 . 091 1:abcde 2:cebad 3:cbaed 4:cadbe

Let X_{1} and X_{2} be discrete random variables whose joint probability function vanishes except for the six values:

$$
\begin{array}{lll}
\mathrm{p}(0,0)=\frac{1}{6} & \mathrm{p}(1,0)=\frac{1}{3} & \mathrm{p}(2,0)=\frac{1}{6} \\
\mathrm{p}(0,1)=\frac{1}{12} & \mathrm{p}(1,1)=\frac{1}{6} & \mathrm{p}(2,1)=\frac{1}{12}
\end{array}
$$

Find the covariance $\operatorname{cov}\left(X_{1}, X_{2}\right)$.
$01 \frac{1}{2} \frac{1}{3} \frac{-1}{2}$
1:acbed 2:cbeda 3:bedac 4:adbec
A pair of dice is rolled 18,000 times. Find the probabilty that a sum of 7 occurs at least 3,000 times. Use a normal approximation to the binomial. . 504 .500 .508.496 . 492 1:baced 2:acedb 3:cedba 4:edbac

Let X_{1} and X_{2} be independent random variables whose standard deviations are σ_{1} and σ_{2}, respectively. What is the standard deviation of $3 X_{1}+4 X_{2}$? $\sqrt{9 \sigma_{1}^{2}+16 \sigma_{2}^{2}} 9 \sigma_{1}+16 \sigma_{2} 3 \sigma_{1}+4 \sigma_{2} \sqrt{9 \sigma_{1}+16 \sigma_{2}}$ $\sqrt{3 \sigma_{1}^{2}+4 \sigma_{2}^{2}} 1$:cbade 2:badec 3:adecb 4:decba

Let X_{1} and X_{2} have joint density function

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}k x_{1} & \text { if } 0 \leq 2 x_{2} \leq x_{1} \leq 2 \\ 0 & \text { elsewhere }\end{cases}
$$

For $f\left(x_{1}, x_{2}\right)$ to be a legitimate density function what must k equal? $\frac{3}{4} \quad \frac{3}{8} \quad \frac{2}{3} \frac{1}{4} \frac{1}{6}$
1:bdaec 2:daecb 3:aecbd 4:eacbd
For the random variables of problem 7 we have $f_{X}\left(x_{1}\right)=\frac{3}{8} x_{1}^{2}$ and $E\left(X_{2} \mid X_{1}=x_{1}\right)=\frac{x_{1}}{4}$. Use this information to compute $E\left(X_{2}\right)$.
$\frac{3}{8} \frac{2}{3} \frac{3}{128} \quad \frac{1}{3} \frac{3}{64}$
1:edcba 2:daecb 3:aecbd 4:ecbda
Let X have density function

$$
f(x)= \begin{cases}x e^{-\frac{x^{2}}{2}} & \text { if } x>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Let $U=X^{2}$. Find $f_{U}(2)$.
$\frac{1}{2} e^{-1} 2 e^{-2} 2 e^{-1} \frac{1}{2} e^{-2} \mathrm{t} \frac{1}{4} e^{-2}$
1:bacde 2:acdeb 3:cdeba 4:debac
Let X and Y have means 3 and 4 respectively. Say $\mathrm{E}(\mathrm{XY})=18$.
Find the covariance $\operatorname{cov}(\mathrm{X}, \mathrm{Y})$.
62012416
1:baecd 2:ecdab 3:ecdba 4:cdbae

A pair of dice is rolled. Given that at least one of the dice shows a 1, what is the probability that the sum of the dice is at most 5 ?
$\begin{array}{llllll}\frac{7}{11} & \frac{10}{11} & \frac{7}{12} & \frac{5}{18} & \frac{5}{12}\end{array}$
1:baecd 2:decab 3:ecdba 4:cdbae
Let A and B be events with $\mathrm{P}(\mathrm{A})=0.2, \mathrm{P}(\mathrm{B})=0.5$ and $P(A \cap B)=0.1$. Find the probability that neither A nor B occurs..
0.40 .30 .20 .50 .61 1:ecbda 2:bdaec 3:dabce 4:dabce

In problem 12 are A and B independent? Yes No Don't choose this answer Don't choose this answer Don't choose this answer 1:baecd 2:cdbae 3:dbaec 4:ecdba

Let X have density function

$$
f(x)= \begin{cases}(2+x) / 4 & \text { if }-2 \leq x \leq 0 \\ (2-\mathrm{x}) / 4 & \text { if } 0 \leq x \leq 2\end{cases}
$$

Find $F_{X}(1) \cdot \frac{7}{8} \frac{3}{4} \frac{5}{8} \frac{11}{16} \frac{13}{16}$ 1:ecbad 2:decba 3:ecbad 4:cbade
Four components each have an exponential distribution with an average life of three years. If all are turned on, find the probability that exactly three will be working one year later.
. 417 . 301 . 266 . 182 . 094 1:cbeda 2:edacb 3:dacbe 4:cbeda
Let X_{1} and X_{2} have joint density function

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}x_{1}+x_{2} & \text { if } 0 \leq x_{1} \leq 1 \text { and } 0 \leq x_{2} \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

Find $E\left(X_{1} \mid X_{2}=x_{2}\right)$.
$\frac{3 x_{2}+2}{6 x_{2}+3} \frac{3 x_{2}+2}{2 x_{2}+1} \frac{2 x_{2}+1}{4 x_{2}+3} \quad \frac{3 x_{2}+1}{6 x_{2}+1} \frac{2 x_{2}+3}{x_{2}+6} 1$:cabde 2:abdec 3:decab 4:ecabd
Suppose that 20% of the membership in a club would answer "Yes" to the question: "Do you like classical music?" What is the probability that 6 people (randomly selected) would have to be questioned before getting 4 "Yes" responses?
. 010 . 002 . 027.032 .080 1:abcde 2:bcdea 3:cdeab 4:deabc
The number of dandelions growing in a lawn has a Poisson distribution with a mean of 2 dandelions per square yard. Find the probability that a section of 3 square yards will contain at least 2 dandelions.
$1-7 e^{-6} 1-e^{-6} 1-e^{-2} 1-6 e^{-6} 1-3 e^{-2} 1$:abcde 2:bcdea 3:cdeab 4:deabc
A discrete random variable X has probability function: $\mathrm{p}(0)=.1, \mathrm{p}(1)=.5, \mathrm{p}(2)=.4$ and $\mathrm{p}(\mathrm{x})=0$ elsewhere.

Find $V(X)$.
. 410 . 315 . 452 . 368 . 287 1:abcde 2:bcdea 3:cdeab 4:deabc
Let X be a random variable with mean $\mu=3$ and standard deviation $\sigma=2$. Use Tchebysheff's inequality to complete the next sentence. The probability that X is not less than 6 units from the mean is at most
$\frac{1}{9} \frac{1}{4} \frac{1}{36} \quad \frac{1}{25} \quad \frac{1}{16} 1$:cbeda 2 :edacb 3:dacbe 4 :acbed
Find the value of

$$
\sum_{y=3}^{\infty}\binom{y-1}{2}(.1)^{4}(.9)^{y-3}
$$

$0.1110 \frac{1}{9} 0.9$ 1:bedac 2:cedab 3:edacb 4:cabed
Among 6 motors produced by an assembly line 2 are defective. Three of the six are selected for sale. Find the probability that none of these is defective.
$\frac{1}{5} \frac{1}{6} \frac{1}{4} \quad \frac{1}{7} \quad \frac{1}{8} 1$:cbeda 2 :edacb 3 :edacb 4 :cbeda
A committee consists of 3 women and 5 men. Two of the members are to be chosen to form a subcommittee. Let X denote the number of women in the subcommittee. Find the expected value $\mathrm{E}(\mathrm{X})$.
$\frac{21}{28} \quad \frac{41}{28} \quad \frac{18}{28} \quad \frac{31}{28} \quad \frac{25}{28} 1$:cbeda 2 :edacb 3:dacbe 4 :acbed
Let X be normal with $\mu=2$ and $\sigma=3$. Find $P(-1 \leq X \leq 3.5)$.
.5328. 1915 . 3830 . 3413 . 6826 1:edacb 2:dcbae 3:acbed 4:cbeda

Telephone calls arrive at a switchboard at the rate of 4 per hour. Let X denote the time in hours elapsed before the 5 th call comes in. Which of the following is the distribution of X ?

Gamma with $\alpha=5$ and $\beta=\frac{1}{4}$ Poisson with $\lambda=\frac{4}{5}$ Gamma with $\alpha=5$ and $\beta=4$ Beta with $\alpha=5$ and $\beta=4$ Beta with $\alpha=5$ and $\beta=\frac{1}{4}$ 1:ebcad 2:bcade 3:bcade 4:adebc

