MATH 323 TEST II

1. A continuous random variable X has probability density function f given by

$$f(x) = \begin{cases} \frac{x}{16} & \text{for } 2 \le x \le 6\\ \text{zero elsewhere} \end{cases}$$

•

Then P [$3 \le X \le 5$] =

a. $\frac{1}{2}$ b. $\frac{1}{8}$ c. $\frac{1}{4}$ d. $\frac{5}{32}$ e. $\frac{5}{16}$

2. If M(t) is the moment-generating function for X, the moment-generating function for Y = 2 X - 3 is

a. $e^{-3t} M(2t)$ b. $e^{3t} M(2t)$ c. $e^{-2t} M(3t)$

d. 2M(t) - 3 e. $e^{-3t} M(t)$

3. The probability-generating function P(t) for a binomial random variable of 37 trials with p = 0.6 is

a. (0.6t + 0.4) ³⁷	b. $(0.4t + 0.6)^{37}$	c. 0.6t ³⁷ + 4
d. $\frac{1}{38}$ t ³⁸ (.6) + 0.4t	e. $\frac{37}{\Re}_{y}$ (.6) ^{ty} (.4) ^{37 - ty}	

4.		P(x) 0.3		A random variable X has probability distribution shown in the table at the left. It is easily seen that $E(X) = 0.7$. The standard deviation of X is		
	1	0.1				
	-1	0.2				
	2	0.4				
a.	1.19		b. 1.10	c. 1.12	d. 1.22	e. 1.27

5. Thirty percent of magnetrons obtained from a manufacturer are defective. Let Y denote the number of non-defective magnetrons in a shipment of 25. The probability P [$13 \le Y \le 17$] is

- 6. Let Y be a binomial random variable with parameters n = 6 and $p = \frac{1}{3}$. The probability P (Y= E(Y)), that Y equals its expected value, is
- a. 0.3292 b. 0.3071 c. o.3498 d. 0.3854 e. 0.3987

7. A shipment of 100 lenses arrives at an optical shop. It is known that on the average 6% of these lenses will have scratches on them. The probability that 30 lenses must be examined before 4 scratched lenses will be found is

a. $\binom{29}{3}$ (.06) ⁴ (.94) ²⁶ (.94) ²⁶ b. $\binom{30}{3}$ (.06) ⁴ (.94) ²⁶ c. $\binom{30}{4}$ (.06) ⁴ (.94) ²⁶ d. $\binom{29}{3}$ (.06) 3 (.94) 27 e. $\binom{29}{4}$ (.06) 4 (.94) 26

- 8. A random variable X has a Poisson distribution with mean $\lambda = 8$. The value of $E(X^2)$ is
- a. 72 b. 8 c. 16 d. 64 e. 32

9. According to an advertisement by a coffee company 70% of all coffee drinkers prefer their brand. The probability that the third person interviewed is such a coffee drinker is

a. 0.063 b. 0.082	c. 0.115	d. 0.052	e. 0.077
-------------------	----------	----------	----------

10. A probability generating function for a random variable Y is given by

$$P(t) = \frac{1}{2} (5 + t + 2t^{2} + 3t^{3} + t^{4})$$

The value of E (Y (Y - 1)) is
a. 17 b. 19 c. 16 d. 20 e. 15

- 11. Let X be a random variable with E (X) = μ and standard deviation σ . If P [|X - μ | < k σ] $\geq \frac{16}{25}$ then the smallest value of k is
- a. $\frac{5}{3}$ b. $\frac{1}{2}$ c. $\frac{4}{3}$ d. $\frac{5}{4}$ e. $\frac{7}{3}$

12. Let X be a random variable with μ = 73 and σ = 8. Using Tchebysheff's theorem find the largest value for Z such that

P [57 < x < 89] ≥ Z

a. 0.75 b. 0.80 c. 0.65 d. 0.85 e. 0.77

- 13. Find which one of the following functions cannot be a probability density function no matter what value the constant k is given. These functions have value zero except where defined below.
- a. $kx^{-\frac{3}{2}}$; $0 < x \le 1$ b. $k |\sin x|$; $-\pi \le x \le \pi/2$ c. ke^{x} ; $0 \le x \le 10$ d. $kx^{-\frac{3}{2}}$; $1 \le x < \infty$

e. $k e^{-x} |sin x|; 0 \le x < \infty$

- 14. An average of 12 people per hour come to the emergency room of a hospital during the hours from 9:00 p.m. to 5:00 a.m. Let Y denote the number of people that come between 1:00 a.m. and 2:00 a.m. Find the probability $P [8 \le Y \le 11]$.
- a. 0.372 b. 0.462 c. 0.576 d. 0.155 e. 0.242

- 15. In problem 14 find the probability that thirteen people come between 1:00 a.m. and 2:00 a.m.
- a. 0.106 b. 0 c. 0.115 d. 0.098 e. 0.003

16. A sack contains 9 oranges 4 of which are blemished. A sample of three oranges is selected at random. Let Y denote the number of blemished oranges in the sample. Find P [y = 1]

17. A continuous random variable X has probability density function f(x) given by

$$f(x) = \begin{cases} \frac{x}{2} & 0 \le x \le 1\\ \frac{1}{4} & 1 & < x \le 4 \end{cases}$$

The expected value E (X) is

a. 2.04 b. 1.98 c. 2.81 d. 3.41 e. 3.07