MATH 323 TEST II

1. A continuous random variable X has probability density function f given by

$$
f(x)=\left\{\begin{array}{c}
\frac{x}{16} \text { for } 2 \leq x \leq 6 \\
\text { zero elsewhere }
\end{array}\right.
$$

Then $P[3 \leq X \leq 5]=$
a. $\frac{1}{2}$
b. $\frac{1}{8}$
c. $\frac{1}{4}$
d. $\frac{5}{32}$
e. $\frac{5}{16}$
2. If $M(t)$ is the moment-generating function for X, the moment-generating function for $Y=2 X-3$ is
a. $e^{-3 t} M(2 t)$
b. $e^{3 t} \mathrm{M}(2 \mathrm{t})$
c. $e^{-2 t} M(3 t)$
d. $2 \mathrm{M}(\mathrm{t})-3$
e. $e^{-3 t} M(t)$
3. The probability-generating function $\mathrm{P}(\mathrm{t})$ for a binomial random variable of 37 trials with $p=0.6$ is
a. $(0.6 t+0.4)^{37}$
b. $(0.4 t+0.6)^{37}$
c. $0.6 t^{37}+4$
d. $\frac{1}{38} \mathrm{t}^{38}(.6)+0.4 \mathrm{t}$
e. $\begin{gathered}37 \\ \Re \\ y\end{gathered}$
$(.6)^{\text {ty }}(.4)^{37-t y}$
4. $x \quad P(x)$
$0 \quad 0.3$
A random variable X has probability distribution shown in the table at the left. It is easily seen that $E(X)=0.7$. The standard deviation of X is
10.1
$\begin{array}{ll}-1 & 0.2\end{array}$
$2 \quad 0.4$
a. 1.19
b. 1.10
C. 1.12
d. 1.22
e. 1.27
5. Thirty percent of magnetrons obtained from a manufacturer are defective. Let Y denote the number of non-defective magnetrons in a shipment of 25. The probability $P[13 \leq Y \leq 17]$ is
a. 0.471
b. 0.488
c. 0.405
d. 0.411
e. 0.439
6. Let Y be a binomial random variable with parameters $n=6$ and $p=\frac{1}{3}$. The probability $P(Y=E(Y))$, that Y equals its expected value, is
a. 0.3292
b. 0.3071
c. 0.3498
d. 0.3854
e. 0.3987
7. A shipment of 100 lenses arrives at an optical shop. It is known that on the average 6% of these lenses will have scratches on them. The
probability that 30 lenses must be examined before 4 scratched lenses will be found is
a. $\binom{29}{3}(.06)^{4}(.94)^{26}$
b. $\binom{30}{3}(.06)^{4}(.94)^{26}$
c. $\binom{30}{4}(.06)^{4}$
$(.94)^{26}$
d. $\binom{29}{3}(.06)^{3}(.94)^{27}$
e. $\binom{29}{4}(.06)^{4}(.94)^{26}$
8. A random variable X has a Poisson distribution with mean $\lambda=8$. The value of $E\left(X^{2}\right)$ is
a. 72
b. 8
c. 16
d. 64
e. 32
9. According to an advertisement by a coffee company 70% of all coffee drinkers prefer their brand. The probability that the third person interviewed is such a coffee drinker is
a. 0.063
b. 0.082
c. 0.115
d. 0.052
e. 0.077
10. A probability generating function for a random variable Y is given by

$$
P(t)=\frac{1}{2}\left(5+t+2 t^{2}+3 t^{3}+t^{4}\right)
$$

The value of $E(Y(Y-1))$ is
a. 17
b. 19
c. 16
d. 20
e. 15
11. Let X be a random variable with $E(X)=\mu$ and standard deviation σ. If $P[|X-\mu|<k \sigma] \geq \frac{16}{25} \quad$ then the smallest value of k is
a. $\frac{5}{3}$
b. $\frac{1}{2}$
c. $\frac{4}{3}$
d. $\frac{5}{4}$
e. $\frac{7}{3}$
12. Let X be a random variable with $\mu=73$ and $\sigma=8$. Using Tchebysheff's theorem find the largest value for Z such that

$$
P[57<x<89] \geq Z
$$

a. 0.75
b. 0.80
c. 0.65
d. 0.85
e. 0.77
13. Find which one of the following functions cannot be a probability density function no matter what value the constant k is given. These functions have value zero except where defined below.
a. $k x^{-\frac{3}{2}} ; 0<x \leq 1$
b. $\mathrm{k} \mid \sin \mathrm{xl} ;-\pi \leq \mathrm{x} \leq \pi / 2$
c. $k e^{x} ; 0 \leq x \leq 10$
d. $\mathrm{kx}^{-\frac{3}{2}} ; 1 \leq \mathrm{x}<\infty$
e. $k e^{-x}|\sin x| ; 0 \leq x<\infty$
14. An average of 12 people per hour come to the emergency room of a hospital during the hours from 9:00 p.m. to 5:00 a.m. Let Y denote the number of people that come between 1:00 a.m. and 2:00 a.m. Find the probability P [$8 \leq Y \leq 11$].
a. 0.372
b. 0.462
c. 0.576
d. 0.155
e. 0.242
15. In problem 14 find the probability that thirteen people come between 1:00 a.m. and 2:00 a.m.
a. 0.106
b. 0
c. 0.115
d. 0.098
e. 0.003
16. A sack contains 9 oranges 4 of which are blemished. A sample of three oranges is selected at random. Let Y denote the number of blemished oranges in the sample. Find $P[y=1]$
a. 0.476
b. 0.513
c. 0.0476
d. 0.0794
e. 0.402
17. A continuous random variable X has probability density function $f(x)$ given by

$$
f(x)=\left\{\begin{array}{ll}
\frac{x}{2} & 0 \leq x \leq 1 \\
\frac{1}{4} & 1
\end{array}<x \leq 4\right.
$$

The expected value $E(X)$ is
a. 2.04
b. 1.98
c. 2.81
d. 3.41
e. 3.07

