1. Let $f(x)=3 x^{2} \quad 0 \leq x \leq 1$

0 elsewhere
Then $P(.3 \leq X \leq .8)=$
a. 0.485
b. 0.512
c. 0.027
d. 0.064
e. 0.217
2. Heavy rains occur twice every three years on the average in a certain country. The variance in time (in years) between heavy rains in that country is
a. 2.25
b. 1.5
c. 0.73
d. 4.5
e. 0.44
3. A random variable X has exponential distribution with mean 4. The value of $E\left(X^{3}\right)$ is
a. 384
b. 192
c. 251
d. 64
e. 128
4. Let X be a random variable with gamma distribution with $\alpha=700$ and $\beta=50$. A lower bound for the probability $\mathrm{P}(\mathrm{X} \leq 40000)$ according to Tchebycheff's inequality is (hint: $E(X)=35000$)
a. 0.93
b. 0.87
c. 0.07
d. 0.78
e. 0.66
5. Let X be normal with mean 500 and standard deviation 60 . Then $P(500 \leq X \leq 602)$ is
a. 0.455
b. 0.066
c. 0.044
d. 0.233
e. 0.031
6. Let $f(x)=k x^{3}(1-x)^{5}$ for $0 \leq x \leq 1$

0 elsewhere

What value of k will make this a probability density?
a. 504
b. 168
c. 105
d. 464
e. 398
7. Let X have Beta distribution with $\alpha=2, \beta=3$. Then $E\left(X^{2}\right)$ is
a. 0.200
b. 0.181
c. 1.81
d. 2.03
e. 0.562
8. The number of cars arriving at a toll booth has a Poisson distribution with a rate of 20 per hour. Suppose that a car has just arrived and X is the time until the next car comes. The probability density function for X on the interval $(0<\mathrm{t}<\infty)$ is $f(t)=$
a. $0.05 \mathrm{e}^{-0.05 t}$
b. $20 e^{-20 t}$
c. $\frac{20 \mathrm{t}}{\mathrm{t}} \mathrm{e}^{-20}$
d. $e^{-t / 20}$
e. $\frac{1}{\mathrm{t}-20}$
9. The amount of a certain drug made by a firm in one day has an exponential distribution with a mean of 3 lb . The probability that the firm produces more than 6 lb in one day is
a. 0.1353
b. 0.7413
c. 0.2217
d. 0.0598
e. 0.0761
10. Let X_{1} and X_{2} be gamma distributed with parameters $\alpha_{1}=3, \beta_{1}=3, \alpha_{2}=4, \beta_{2}=3$. Then $Y=X_{1}+X_{2}$ will be gamma distributed with parameters
a. $\alpha=7, \beta=3$
b. $\alpha=7, \beta=6$
c. $\alpha=1, \beta=9$
d. $\alpha=12, \beta=6$
e. $\alpha=12, \beta=9$
11. The height at the shoulders of a adult bull elephant has normal distribution with mean 3.3 meters and standard deviation 0.2 meters. The probability that an elephant will be found whose height at shoulders is larger than 4 meters is
a. 0.0002
b. 0.0012
c. 0.0110
d. 0.0022
e. 0.0004
12. Let X be the time (in hours) necessary for a certain type of epoxy to cure, and suppose that X has Weibull distribution with $\gamma=2$ and $\theta=1.5$. The probability that it will take less than $\sqrt{3}$ hours to cure is
a. 0.865
b. 0.912
c. 0.711
d. 0.157
e. 0.665
13. A final exam consisting of 150 questions is given, and the scores were found to be approximately normally distributed with mean 113 and standard deviation 28 . What is the lowest grade for passing if 90% of the students will pass?
a. 78
b. 61
c. 84
d. 92
e. 53
14. Let X_{1} and X_{2} be jointly uniform on the region defined by $0 \leq \mathrm{X}_{1} \leq 1$, $0 \leq x_{2} \leq 2$. The joint probability density function on this region is $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=$
a. $\frac{1}{2}$
b. $\frac{2}{3}$
c. 1
d. 2
e. $\frac{3}{2}$
15. Let $f\left(x_{1}, x_{2}\right)=6 x_{1} x_{2}^{2} \quad 0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 1$

0 elsewhere
Then the marginal probability density $f_{1}\left(x_{1}\right)$ is
a. $2 \mathrm{x}_{1}$
b. $1+3 x_{1}{ }^{2}$
c. $3 x_{1}{ }^{2}$
d. $1-3 x_{1}^{2}$ e. $1-2 x_{1}$
16. Suppose that X_{1} and X_{2} are continuous with joint probability density

$$
f\left(x_{1}, x_{2}\right)=\frac{1}{4}\left(x_{1},+x_{2}\right) \text { for } 0 \leq x_{2} \leq x_{1} \leq 2
$$

It is easily checked that the marginal probability densities are

$$
f_{1}\left(x_{1}\right)=\frac{3}{8} x_{1}{ }^{2} \text { and } f_{2}\left(x_{2}\right)=\frac{1}{2}+\frac{1}{2} x_{2}-\frac{3}{8} \quad x_{2}^{2}
$$

Using the information
a. Sketch the region on which $f\left(x_{1} x_{2}\right) \geq 0$
b. Find $\left(\left.X_{2} \leq \frac{1}{2} \quad \right\rvert\, X_{1}=1\right)$
c. Give the integrated integral whose value is $P\left(X_{2}>1, X_{1}>\frac{1}{2}\right)$

