If $r=\rho$ is a double eigenvalue of the 2×2 matrix A with just one linearly independent eigenvector ξ and η is a vector satisfying $(A-\rho I) \eta=\xi$, then the general solution of $x^{\prime}=A x$ is:
$c_{1} e^{\rho t} \xi+c_{2}\left[t e^{\rho t} \xi+e^{\rho t} \eta\right]$
$c_{1} e^{\rho t} \xi+c_{2} t e^{\rho t} \xi+\eta c_{1} e^{\rho t} \xi+c_{2} e^{\rho t} \eta c_{1} e^{\rho t} \xi+c_{2} e^{\rho t} \eta c_{1} e^{\rho t} \xi+c_{2} e^{\rho t} \eta$
The general solution of $x^{\prime}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) x$ is
$c_{1}\binom{\cos t}{-\sin t}+c_{2}\binom{\sin t}{\cos t}$
$c_{1} e^{t}\binom{1}{0}+c_{2} e^{-t}\binom{-1}{0}$
$c_{1}\binom{\cos t}{\cos t}+c_{2}\binom{\sin t}{\sin t}$
$c_{1}\binom{e^{t} \cos t}{-e^{t} \sin t}+c_{2}\binom{e^{t} \cos t}{e^{t} \sin t}$
$c_{1} e^{t}\binom{1}{1}+c_{2} e^{-t}\binom{0}{1}$
Assume $\mathrm{x}^{\prime}=\mathrm{Ax}$ has a fundamental matrix $\Psi(t)=\left(\begin{array}{cc}(1+t) & (2-t) \\ (t-2) & (1+t)\end{array}\right) . \quad$ Note that $\Psi(0) \neq I$.
Assume $x(t)$ is the solution of the initial value problem $x^{\prime}=A x$ and $x(0)=\binom{2}{3}$. Calculate $x(t)$ at $t=2$.
$x(2)=\frac{3}{5}\binom{-4}{7}$
$x(2)=\binom{6}{9}$
$x(2)=\binom{3}{0}$
$x(2)=\binom{8}{-1}$
$x(2)=\frac{3}{7}\binom{2}{3}$

The matrix $A=\left(\begin{array}{cc}1 & 2 \\ 0 & -3\end{array}\right)$ has eigenvalues 1 and -3 with corresponding eigenvectors $\xi^{1}=\binom{1}{0}$ and $\xi^{2}=\binom{1}{-2}$.

Now consider the nonhomogeneous equation $x^{\prime}=A x+g(t)$ where A is the above matrix and $g(t)=\binom{0}{-2 e^{-2 t}}$.

Using the above information and the method of variation of parameters with $X_{p}=\Psi U$, the equations satisfied by the components u_{1}^{\prime} and u_{2}^{\prime} of U^{\prime} are

$$
\begin{array}{clc}
e^{t} u_{1}^{\prime}+e^{-3 t} u_{2}^{\prime} & = & 0 \\
e^{-3 t} u_{2}^{\prime} & = & e^{-2 t} \\
& \\
e^{-t} u_{1}^{\prime}+e^{-3 t} u_{2}^{\prime} & = & 0 \\
e^{-3 t} u_{2}^{\prime} & = & -2 e^{-2 t} \\
& \\
e^{t} u_{1}^{\prime}+e^{-3 t} u_{2}^{\prime} & = & 0 \\
3 e^{-3 t} u_{2}^{\prime} & = & 0 \\
& \\
u_{1}^{\prime}+e^{2 t} u_{2}^{\prime} & = & 0 \\
e^{-2 t} u_{2}^{\prime} & = & -2 e^{2 t^{\prime}} \\
& \\
u_{1}^{\prime}+u_{2}^{\prime} & = & e^{t} \\
e^{-3 t} u_{2}^{\prime} & = & -2 e^{-2 t}
\end{array}
$$

