
If r = ρ is a double eigenvalue of the 2 x 2 matrix A with just one linearly independent eigenvector
ξ and η is a vector satisfying (A− ρI)η = ξ, then the general solution of x′ = Ax is:
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Assume x’ = Ax has a fundamental matrix Ψ(t) =
(
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)
. Note that Ψ(0) 6= I.

Assume x(t) is the solution of the initial value problem x′ = Ax and x(0) =
(
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at t = 2.
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The matrix A =
(

1 2
0 −3

)
has eigenvalues 1 and −3 with corresponding eigenvectors ξ1 =

(
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)
and

ξ2 =
(

1
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)
.

Now consider the nonhomogeneous equation x′ = Ax + g(t) where A is the above matrix and

g(t) =
(

0
−2e−2t

)
.

Using the above information and the method of variation of parameters with Xp = ΨU , the
equations satisfied by the components u′1 and u′2 of U ′ are

etu′1 + e−3tu′2 = 0
e−3tu′2 = e−2t

e−tu′1 + e−3tu′2 = 0
e−3tu′2 = −2e−2t

etu′1 + e−3tu′2 = 0
3e−3tu′2 = 0

u′1 + e2tu′2 = 0
e−2tu′2 = −2e2t′

u′1 + u′2 = et

e−3tu′2 = −2e−2t
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