If » = p is a double eigenvalue of the 2 x 2 matrix A with just one linearly independent eigenvector
¢ and 7 is a vector satisfying (A — pI)n = &, then the general solution of 2’ = Ax is:
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The general solution of 2/ = ( 0 1> T is
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Assume x’ = Ax has a fundamental matrix ¥(t) = <

Assume x(t) is the solution of the initial value problem 2’ = Az and x(0) = @) . Calculate x(t)

at t = 2.



The matrix A = ((1] 2 > has eigenvalues 1 and —3 with corresponding eigenvectors ¢! = (é) and
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Now consider the nonhomogeneous equation ' = Az + g(t) where A is the above matrix and

g(t) = (_22—275) :

Using the above information and the method of variation of parameters with X, = WU, the
equations satisfied by the components u) and uf, of U’ are
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