If $r = \rho$ is a double eigenvalue of the 2 x 2 matrix A with just one linearly independent eigenvector ξ and η is a vector satisfying $(A - \rho I)\eta = \xi$, then the general solution of x' = Ax is:

$$c_1 e^{\rho t} \xi + c_2 [t e^{\rho t} \xi + e^{\rho t} \eta]$$

 $c_1 e^{\rho t} \xi + c_2 t e^{\rho t} \xi + \eta \ c_1 e^{\rho t} \xi + c_2 e^{\rho t} \eta \ c_1 e^{\rho t} \xi + c_2 e^{\rho t} \eta \ c_1 e^{\rho t} \xi + c_2 e^{\rho t} \eta$

The general solution of
$$x' = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} x$$
 is
 $c_1 \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} + c_2 \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$
 $c_1 e^t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} -1 \\ 0 \end{pmatrix}$
 $c_1 \begin{pmatrix} \cos t \\ \cos t \end{pmatrix} + c_2 \begin{pmatrix} \sin t \\ \sin t \end{pmatrix}$
 $c_1 \begin{pmatrix} e^t \cos t \\ -e^t \sin t \end{pmatrix} + c_2 \begin{pmatrix} e^t \cos t \\ e^t \sin t \end{pmatrix}$
 $c_1 e^t \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Assume x' = Ax has a fundamental matrix $\Psi(t) = \begin{pmatrix} (1+t) & (2-t) \\ (t-2) & (1+t) \end{pmatrix}$. Note that $\Psi(0) \neq I$. Assume x(t) is the solution of the initial value problem x' = Ax and $x(0) = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Calculate x(t) at t = 2.

$$x(2) = \frac{3}{5} \begin{pmatrix} -4\\7 \end{pmatrix}$$
$$x(2) = \begin{pmatrix} 6\\9 \end{pmatrix}$$
$$x(2) = \begin{pmatrix} 3\\0 \end{pmatrix}$$
$$x(2) = \begin{pmatrix} 8\\-1 \end{pmatrix}$$
$$x(2) = \frac{3}{7} \begin{pmatrix} 2\\3 \end{pmatrix}$$

The matrix $A = \begin{pmatrix} 1 & 2 \\ 0 & -3 \end{pmatrix}$ has eigenvalues 1 and -3 with corresponding eigenvectors $\xi^1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\xi^2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

Now consider the nonhomogeneous equation x' = Ax + g(t) where A is the above matrix and $g(t) = \begin{pmatrix} 0 \\ -2e^{-2t} \end{pmatrix}$.

Using the above information and the method of variation of parameters with $X_p = \Psi U$, the equations satisfied by the components u'_1 and u'_2 of U' are

 $\begin{array}{rcl} e^{t}u_{1}'+e^{-3t}u_{2}'&=&0\\ e^{-3t}u_{2}'&=&e^{-2t}\\ \\ e^{-t}u_{1}'+e^{-3t}u_{2}'&=&0\\ e^{-3t}u_{2}'&=&-2e^{-2t}\\ \\ e^{t}u_{1}'+e^{-3t}u_{2}'&=&0\\ 3e^{-3t}u_{2}'&=&0\\ \\ u_{1}'+e^{2t}u_{2}'&=&-2e^{2t'}\\ \\ u_{1}'+u_{2}'&=&e^{t}\\ e^{-3t}u_{2}'&=&-2e^{-2t} \end{array}$