IV.To solve the non-homogeneous equation
(1) $y^{(n)}+p_{1}(x) y^{(n-1)}+\ldots+p_{n-1}(x) y^{\prime}+p_{n}(x)=g(x)$

We

1. find a fundamental system of solutions $y_{1}, y_{2} \ldots, y_{n}$ of the homogeneous equation;
2. find a particular solution y_{p} (any solution at all) of the non-homogeneous equation,
3. write the general solution as

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x)+y_{p}(x) .
$$

Every solution of (1) is obtained by a unique choice of the numbers $c_{1}, c_{2}, \ldots, c_{n}$.

Method of Variation of Parameters

We describe this technique for the cases $n=1, n=2$
$\underline{\mathbf{n}=1} \quad y^{\prime}+p y=g$.
Let y_{1} satisfy the homogeneous equation $y_{1}^{\prime}+p y_{1}=0$
Set $y_{p}=u(x) y_{1}(x), \quad y^{\prime}=u^{\prime} y_{1}+u y_{1}^{\prime}$
Substitute in the given equation
$u^{\prime} y_{1}=u y_{1}^{\prime}+p u y_{1}=g$
$u^{\prime} y_{1}+u\left(y_{1}^{\prime}+p y_{1}\right)=g$
or $u^{\prime} y_{1}=g$ since $y_{1}^{\prime}+p y_{1} \equiv 0$.
$u=\int \frac{g(x)}{y_{1}(x)} d x$ so $y=u y_{1}$ gives
$y_{p}(x)=y_{1}(x) \int \frac{g(x)}{y_{1}(x)} d x$.
ex. $y^{\prime}-2 y=x ; \quad y_{1}=e^{2 x}$
$y_{p}=u e^{2 x}$,
$y_{p}^{\prime}=u^{\prime} e^{2 x}+2 u e^{2 x}$
Therefore, $u^{\prime} e^{2 x}+2 u e^{2 x}-2 u e^{2 x}=x$ or $u^{\prime} e^{2 x}=x ;$ and $u^{\prime}=x e^{-2 x}$

Thus $u=\int x e^{-2 x} d x$ so that (since $y_{p}=u y_{1}$)

$$
y_{p}=e^{2 x} \int x e^{-2 x} d x .
$$

The general solution of the given equation is

$$
\begin{array}{r}
y(x)=c e^{2 x}+e^{2 x} \int x e^{-2 x} d x . \\
\underline{\mathbf{n}=\mathbf{2}} y^{\prime \prime}+p y^{\prime}+q y=g(x)
\end{array}
$$

Let y_{1} and y_{2} be a fundamental system of solutions of the homogeneous equation so that the general solution of the homogeneous equation is

$$
y_{c}=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

Now set $y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$ where u_{1} and u_{2} are unknown functions:
(1) Differentiating, we have

$$
y_{p}^{\prime}=u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}+u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime} .
$$

(2)Now we set $\quad u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$
therefore, $y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}$.
Differentiating again, we have
(3) $y_{p}^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime} u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}$
(4) Substitute in the original differential equation

$$
u_{1}^{\prime}\left(y_{1}^{\prime \prime}\right)+u_{2}^{\prime}\left(y_{2}^{\prime \prime}\right)+u_{1}\left(y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}\right)+u_{2}\left(y_{2}^{\prime \prime}+p y_{2}^{\prime}+q y_{2}\right) \equiv g
$$

Since y_{1} and y_{2} satisfy the homogeneous equation, we have

$$
\begin{equation*}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=g(x) \tag{5}
\end{equation*}
$$

We rewrite the boxed in equations (2) and (5)

$$
(*)\left\{\begin{array}{l}
y_{1}, u_{1}^{\prime}+y_{2} u_{2}^{\prime}=0 \tag{6}\\
y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime}=g
\end{array}\right.
$$

Since y_{1} and y_{2} (as well as \mathbf{g}) are known, we have two equations for u_{1}^{\prime} and u_{2}^{\prime}. These have a unique solution if and only if the determinant of the coefficients is not zero, i.e.,

$$
\left|\begin{array}{cc}
y_{1}(x) & y_{2}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x)
\end{array}\right| \neq 0
$$

But since y_{1} and y_{2} form a fundamental system (and \mathbf{p}, \mathbf{q}, and \mathbf{g} are assumed continuous) this is the Wronskian determinant which dose not vanish. Therefore, equation (6) can be solved for u_{1}^{\prime} and u_{2}^{\prime} which in turn can be integrated and used to yield $y_{p}=u_{1} y_{1}+u_{2} y_{2}$.

If we denote the matrix

$$
\left(\begin{array}{cc}
y_{1}(x) & y_{2}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x)
\end{array}\right) \text { by } \mathrm{W}
$$

and $\binom{u_{1}^{\prime}}{u_{2}^{\prime}}$ and $\binom{0}{g}$ by U^{\prime} and G respectively, we can rewrite (6) as

$$
\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{0}{g},
$$

or as

$$
W U^{\prime}=G
$$

Ex $\quad y^{\prime \prime}-y=x^{2} \quad g(x)=x^{2}$
solve $y^{\prime \prime}-y=0$ to obtain $y_{1}=e^{x}, y_{2}=e^{-x}$
Set $y_{p}=u_{1} y_{1}+u_{2} y_{2}$
Then u_{1}^{\prime} and u_{2}^{\prime} satisfy

$$
\begin{gathered}
\left(\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{0}{g} \\
\text { i.e. }\left(\begin{array}{cc}
e^{x} & e^{-x} \\
e^{x} & -e^{-x}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{0}{x^{2}} .
\end{gathered}
$$

Thus,
$e^{x} u_{1}^{\prime}+e^{-x} m_{2}^{\prime}=0$
$e^{x} u_{1}^{\prime}-e^{-x} u_{2}^{\prime}=x^{2}$
adding, we find $2 e^{x} u_{1}^{\prime}=x^{2}$ therefore $m_{1}^{\prime}=\frac{1}{2} e^{-1} x^{2}, u_{1}^{\prime}=\frac{1}{2} e^{-x} x^{2}$, and $u_{1}=\frac{1}{2} \int x^{2} e^{-x} d x_{1}$ subtracting, we find $2 e^{-x} u_{2}^{\prime}=-x^{2}$ therefore $u_{2}^{\prime}=-\frac{1}{2} e^{x} x^{2}$ and $u_{2}=-\frac{1}{2} \int e^{x} x^{2} d x$

Therefore, the general solution is

$$
y=c_{1} e^{x}+c_{2} e^{-x}+\frac{e^{x}}{2} \int x^{2} e^{-x} d x-\frac{1 e^{-x}}{2} \int x^{2} e^{x} d x
$$

For $n \geq 3$ the same procedure will work.

1. get a fundamental system $y_{1}, y_{2}, \ldots y_{n}$ for the homogeneous equation.
2. Set $y_{p}=u_{1} y_{1}+u_{2} y_{2}+\ldots u_{n} g_{n}$.
3. $u_{1}^{\prime}, u_{2}^{\prime} \ldots u_{n}^{\prime}$ satisfy $W U^{\prime}=G$

$$
\left(\begin{array}{cccc}
y_{1} & y_{2} & \cdots & y_{n} \\
y_{1}^{\prime} & y_{2}^{\prime} & \cdots & y_{n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
y_{1}^{(n-1)} & y_{2}^{(n-1)} & \ldots & y_{n}^{(n-1)}
\end{array}\right)\left(\begin{array}{c}
u_{1}^{\prime} \\
u_{2}^{\prime} \\
\vdots \\
u_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
g
\end{array}\right)
$$

$\underline{\text { Ex }} D^{2}(D-1) y=\sqrt{x}$ Solve $D^{2}(D-1) y=0$ to get $y_{0}=c_{1}+c_{2} x+c_{3} e^{x}$ Set $y_{p}=u_{1}+u_{2} x+u_{3} e^{x}$. then

$$
W=\left(\begin{array}{ccc}
1 & x & e^{x} \\
0 & 1 & e^{x} \\
0 & 0 & e^{x}
\end{array}\right)
$$

and $u_{1}^{\prime}, u_{2}^{\prime}, u 3^{\prime}$ satisfy

$$
\begin{gathered}
\left(\begin{array}{ccc}
1 & x & e^{x} \\
0 & 1 & e^{x} \\
0 & 0 & e^{x}
\end{array}\right)\left(\begin{array}{c}
u_{1}^{\prime} \\
u_{2}^{\prime} \\
u_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\sqrt{x}
\end{array}\right), \\
u_{1}^{\prime}+x u_{2}^{\prime}+e^{x} u_{3}^{\prime}=0 \Rightarrow u_{1}^{\prime}=-x u_{2}^{\prime}-e^{x} u_{3}^{\prime}=x^{\frac{3}{2}}-\sqrt{x} \\
u_{2}^{\prime}+e^{x} u_{3}^{\prime}=0 \Rightarrow u_{2}^{\prime}=-e^{x} u_{3}^{\prime}=-\sqrt{x} \\
e^{x} u_{3}^{\prime}=\sqrt{x} \Rightarrow u_{3}^{\prime}=e^{-x} \sqrt{x} \\
u_{3}^{\prime}=e^{-x} \sqrt{x} \text { therefore } \\
u_{3}=\int \sqrt{x} e^{-x}
\end{gathered}\left\|\begin{array}{l}
u_{2}^{\prime}=-\sqrt{x}=-x^{\frac{1}{2}} \\
u_{2}=\frac{-2}{3} x^{\frac{3}{2}}
\end{array}\right\| \begin{aligned}
& u_{1}^{\prime}=x^{\frac{3}{2}}-x^{\frac{1}{2}} \\
& u_{1}=\frac{2}{3} x^{\frac{3}{2}}-\frac{2}{3} x^{\frac{3}{2}}
\end{aligned}
$$

therefore $y_{p}=\frac{2}{5} x^{\frac{5}{2}}-\frac{2}{3} x^{\frac{3}{2}}-\frac{2}{3} x^{\frac{3}{2}}+e^{x} \int \sqrt{x} e^{-x} d x$
$y_{p}=\frac{2}{5} x^{\frac{5}{2}}-\frac{4}{3} x^{\frac{3}{2}}+e^{x} \int \sqrt{x} e^{-x} d x$
The general solution is

$$
y=c_{1}+c_{2} x+c_{3} e^{x}+\frac{2}{5} x^{\frac{5}{2}}-\frac{4}{3} x^{\frac{3}{2}}+e^{x} \int \sqrt{x} e^{-x} d x
$$

