IV.To solve the non-homogeneous equation

(1)
$$y^{(n)} + p_1(x)y^{(n-1)} + \ldots + p_{n-1}(x)y' + p_n(x) = g(x)$$

 $\underline{\mathbf{We}}$

- 1. find a fundamental system of solutions y_1, y_2, \dots, y_n of the homogeneous equation;
- 2. find a particular solution y_p (any solution at all) of the non-homogeneous equation,
- 3. write the general solution as

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \ldots + c_n y_n(x) + y_p(x).$$

Every solution of (1) is obtained by a unique choice of the numbers c_1, c_2, \ldots, c_n .

Method of Variation of Parameters

We describe this technique for the cases n = 1, n = 2

$$\mathbf{n} = \mathbf{1} \quad y' + py = g.$$

Let y_1 satisfy the homogeneous equation $y'_1 + py_1 = 0$

Set
$$y_p = u(x)y_1(x)$$
, $y' = u'y_1 + uy'_1$

Substitute in the given equation

$$u'y_1 = uy_1' + puy_1 = q$$

$$u'y_1 + u(y_1' + py_1) = q$$

or $u'y_1 = g$ since $y'_1 + py_1 \equiv 0$.

$$u = \int \frac{g(x)}{y_1(x)} dx$$
 so $y = uy_1$ gives

$$y_p(x) = y_1(x) \int \frac{g(x)}{y_1(x)} dx.$$

ex.
$$y' - 2y = x$$
; $y_1 = e^{2x}$

$$y_p = ue^{2x},$$

$$y_p' = u'e^{2x} + 2ue^{2x}$$

Therefore, $u'e^{2x} + 2ue^{2x} - 2ue^{2x} = x$ or $u'e^{2x} = x$; and $u' = xe^{-2x}$

Thus $u = \int xe^{-2x}dx$ so that (since $y_p = uy_1$)

$$y_p = e^{2x} \int x e^{-2x} dx.$$

The general solution of the given equation is

$$y(x) = ce^{2x} + e^{2x} \int xe^{-2x} dx.$$

n = 2

$$y'' + py' + qy = g(x)$$

Let y_1 and y_2 be a fundamental system of solutions of the homogeneous equation so that the general solution of the homogeneous equation is

$$y_c = c_1 y_1(x) + c_2 y_2(x)$$

.

Now set $y_p = u_1(x)y_1(x) + u_2(x)y_2(x)$ where u_1 and u_2 are unknown functions:

(1) Differentiating, we have

$$y_p' = u_1'y_1 + u_2'y_2 + u_1y_1' + u_2y_2'.$$

(2) Now we set $u_1'y_1 + u_2'y_2 = 0$

therefore, $y'_p = u_1 y'_1 + u_2 y'_2$.

Differentiating again, we have

- (3) $y_p'' = u_1' y_1'' + u_2 y_2'' u_1 y_1'' + u_2 y_2''$
- (4) Substitute in the original differential equation

$$u_1'(y_1'') + u_2'(y_2'') + u_1(y_1'' + py_1' + qy_1) + u_2(y_2'' + py_2' + qy_2) \equiv g$$

Since y_1 and y_2 satisfy the homogeneous equation, we have

$$\boxed{u_1'y_1 + u_2'y_2 = g(x)}$$

We rewrite the boxed in equations (2) and (5)

(6)
$$(*) \begin{cases} y_1, u'_1 + y_2 u'_2 = 0 \\ y'_1 u'_1 + y'_2 u'_2 = g \end{cases}$$

Since y_1 and y_2 (as well as g) are known, we have two equations for u'_1 and u'_2 . These have a unique solution if and only if the determinant of the coefficients is not zero, i.e.,

$$\left|\begin{array}{cc} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{array}\right| \neq 0$$

But since y_1 and y_2 form a fundamental system (and p, q, and g are assumed continuous) this is the Wronskian determinant which dose not vanish. Therefore, equation (6) can be solved for u'_1 and u'_2 which in turn can be integrated and used to yield $y_p = u_1y_1 + u_2y_2$.

If we denote the matrix

$$\begin{pmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{pmatrix}$$
by W

and $\begin{pmatrix} u'_1 \\ u'_2 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ g \end{pmatrix}$ by U' and G respectively, we can rewrite (6) as

$$\left(\begin{array}{cc} y_1 & y_2 \\ y_1' & y_2' \end{array}\right) \left(\begin{array}{c} u_1' \\ u_2' \end{array}\right) = \left(\begin{array}{c} 0 \\ g \end{array}\right),$$

or as

$$WU' = G$$

 $\begin{array}{ll} \underline{\mathbf{Ex}} \quad y''-y=x^2 \qquad g(x)=x^2\\ \text{solve } y''-y=0 \text{ to obtain } y_1=e^x, y_2=e^{-x}\\ \text{Set } y_p=u_1y_1+u_2y_2\\ \text{Then } u_1' \text{ and } u_2' \text{ satisfy} \end{array}$

$$\begin{pmatrix} y_1 & y_2 \\ y_1' & y_2' \end{pmatrix} \begin{pmatrix} u_1' \\ u_2' \end{pmatrix} = \begin{pmatrix} 0 \\ g \end{pmatrix}$$
i.e.
$$\begin{pmatrix} e^x & e^{-x} \\ e^x & -e^{-x} \end{pmatrix} \begin{pmatrix} u_1' \\ u_2' \end{pmatrix} = \begin{pmatrix} 0 \\ x^2 \end{pmatrix}.$$

$$e^{x} u'_{1} + e^{-x} m'_{2} = 0$$

 $e^{x} u'_{1} - e^{-x} u'_{2} = x^{2}$

adding, we find $2e^{x}u'_{1}=x^{2}$ therefore $m'_{1}=\frac{1}{2}e^{-1}x^{2},\ u'_{1}=\frac{1}{2}e^{-x}x^{2},\ \text{and}\ u_{1}=\frac{1}{2}\int x^{2}e^{-x}dx_{1}$ subtracting, we find $2e^{-x}u'_{2}=-x^{2}$ therefore $u'_{2}=-\frac{1}{2}e^{x}x^{2}$ and $u_{2}=-\frac{1}{2}\int e^{x}x^{2}dx$

Therefore, the general solution is

$$y = c_1 e^x + c_2 e^{-x} + \frac{e^x}{2} \int x^2 e^{-x} dx - \frac{1e^{-x}}{2} \int x^2 e^x dx.$$

For $n \geq 3$ the same procedure will work.

- 1. get a fundamental system $y_1, y_2, \dots y_n$ for the homogeneous equation.
- **2.** Set $y_p = u_1 y_1 + u_2 y_2 + \dots u_n g_n$.
- **3.** $u'_1, u'_2 \dots u'_n$ satisfy WU' = G

$$\begin{pmatrix} y_1 & y_2 & \dots & y_n \\ y'_1 & y'_2 & \dots & y'_n \\ \vdots & \vdots & \vdots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{pmatrix} \begin{pmatrix} u'_1 \\ u'_2 \\ \vdots \\ u'_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ g \end{pmatrix}$$

Ex $D^2(D-1)y = \sqrt{x}$ Solve $D^2(D-1)y = 0$ to get $y_0 = c_1 + c_2x + c_3e^x$ Set $y_p = u_1 + u_2x + u_3e^x$.

then

$$W = \left(\begin{array}{ccc} 1 & x & e^x \\ 0 & 1 & e^x \\ 0 & 0 & e^x \end{array}\right)$$

and $u'_1, u'_2, u3'$ satisfy

$$\begin{pmatrix} 1 & x & e^{x} \\ 0 & 1 & e^{x} \\ 0 & 0 & e^{x} \end{pmatrix} \begin{pmatrix} u'_{1} \\ u'_{2} \\ u'_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \sqrt{x} \end{pmatrix},$$

$$u'_{1} + xu'_{2} + e^{x}u'_{3} = 0 \Rightarrow u'_{1} = -xu'_{2} - e^{x}u'_{3} = x^{\frac{3}{2}} - \sqrt{x}$$

$$u'_{2} + e^{x}u'_{3} = 0 \Rightarrow u'_{2} = -e^{x}u'_{3} = -\sqrt{x}$$

$$e^{x}u'_{3} = \sqrt{x} \Rightarrow u'_{3} = e^{-x}\sqrt{x}$$

$$u'_{3} = e^{-x}\sqrt{x} \quad \text{therefore}$$

$$u_{3} = \int \sqrt{x}e^{-x} \qquad \begin{vmatrix} u'_{2} = -\sqrt{x} = -x^{\frac{1}{2}} \\ u_{2} = \frac{-2}{3}x^{\frac{3}{2}} \end{vmatrix} \quad u'_{1} = \frac{3}{2}x^{\frac{3}{2}} - \frac{2}{3}x^{\frac{3}{2}}$$

therefore $y_p = \frac{2}{5}x^{\frac{5}{2}} - \frac{2}{3}x^{\frac{3}{2}} - \frac{2}{3}x^{\frac{3}{2}} + e^x \int \sqrt{x}e^{-x}dx$ $y_p = \frac{2}{5}x^{\frac{5}{2}} - \frac{4}{3}x^{\frac{3}{2}} + e^x \int \sqrt{x}e^{-x}dx$

The general solution is

$$y = c_1 + c_2 x + c_3 e^x + \frac{2}{5} x^{\frac{5}{2}} - \frac{4}{3} x^{\frac{3}{2}} + e^x \int \sqrt{x} e^{-x} dx$$