Part A (Multiple Choice, 8 points each)

1. Compute the Wronskian of the vectors

$$
x^{(1)}=\binom{2 t}{t} \quad \text { and } x^{(2)}=\binom{t^{2}}{2}
$$

a. $4 \mathrm{t}-\mathrm{t}^{3}$
b. $2 t^{3}+2 t$
c. 0
d. $\mathrm{t}-2$
e. $4 t+t^{3}$
2. Find all of the eigenvalues of the matrix $\left(\begin{array}{rrr}2 & 0 & 7 \\ 1 & 3 & 0 \\ 0 & 0 & -1\end{array}\right)$.
a. $2,3,-1$
b. 2, 3, 1
c. $0,2,3$
d. $-2,3,1$
e. $2,-3,1$
3. The matrix $\mathrm{A}=\left(\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 3\end{array}\right)$ has $\lambda=1$ as a repeated eigenvalue of multiplicity 2 .

Find all of the eigenvectors of A for this eigenvalue.
a. all non-zero multiples of $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \quad$ b. all non-zero multiples of $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
c. all non-zero multiples of $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
d. all non-zero linear combinations of $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$
e. all non-zero linear combinations of $\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$ and $\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right)$
4. Find the eigenvalues λ and the corresponding eigenvectors ξ for the matrix $\left(\begin{array}{ll}2 & 0 \\ 5 & 0\end{array}\right)$
a. $\lambda=0, \xi=\binom{0}{1} ; \lambda=2, \xi=\binom{2}{5}$
b. $\lambda=0, \xi=\binom{1}{0} ; \lambda=2, \xi=\binom{2}{5}$
c. $\lambda=0, \xi=\binom{0}{1} ; \lambda=-2, \xi=\binom{5}{2}$
d. $\lambda=1, \xi=\binom{1}{0} ; \lambda=2, \xi=\binom{2}{5}$
e. $\lambda=0, \xi=\binom{1}{-1} ; \lambda=5, \xi=\binom{5}{2}$
5. One of the following is a real solution of the equation $\quad x^{\prime}=\left(\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right) x$.
a. $\binom{\cos 2 t}{-\sin 2 t}$ b. $\binom{\sin 2 t}{2 \cos 2 t}$
c. $\binom{\cos 2 t}{\sin 2 t-\cos 2 t}$
d. $\binom{\sin 2 t}{\sin 2 t+\cos 2 t}$
e. $\binom{\sin 2 t+\cos 2 t}{\sin 2 t-\cos 2 t}$
6. Find an eigenvector with eigenvalue $\lambda=2$ for the matrix $\left(\begin{array}{llll}2 & 5 & 0 & 8 \\ 3 & 6 & 0 & 2 \\ 4 & 2 & 2 & 4 \\ 1 & 0 & 0 & 7\end{array}\right)$.
a. $\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$
b. $\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)$
c. $\left(\begin{array}{r}1 \\ -1 \\ 2 \\ 3\end{array}\right)$
d. $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 7\end{array}\right)$
e. $\left(\begin{array}{l}2 \\ 2 \\ 2 \\ 2\end{array}\right)$

PART B (Partial credit) 7. (10 points) Solve the initial value problem

$$
\begin{aligned}
& y^{\prime \prime}+y=1-u_{\pi}(t) \\
& y(0)=0, y^{\prime}(0)=0
\end{aligned}
$$

by use of convolution.
8. $(10$ points $)$ The set of vectors $x^{(1)}=(-2,2,2), \quad x^{(2)}=(-1,2,0), \quad x^{(3)}=(-1,-2,4)$ is linearly dependent. Find numbers c_{1}, c_{2}, c_{3} such that $c_{1} x^{(1)}+c_{2} x^{(2)}+c_{3} x^{(3)}=0$.
9.(4 points) a. Find the eigenvalues and eigenvectors for the matrix $A=\left(\begin{array}{ll}5 & 3 \\ 0 & 5\end{array}\right)$.
(8 points) b. Use the information from part a of this problem to find the general solution of equation $\quad x^{\prime}=\left(\begin{array}{ll}5 & 3 \\ 0 & 5\end{array}\right) x$.
10.(10 points) Find a fundamental set of solutions of the equation

$$
\frac{d x}{d t}=\left(\begin{array}{rr}
1 & 1 \\
4 & -2
\end{array}\right) x .
$$

11.(10 points) Find a matrix T satisfying the equation

$$
T^{-1}\left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right) T=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

