Part A (Multiple Choice, 8 points each)

1. Compute the Wronskian of the vectors

$$x^{(1)} = \begin{pmatrix} 2t \\ t \end{pmatrix} \text{ and } x^{(2)} = \begin{pmatrix} t^2 \\ 2 \end{pmatrix}$$

a. $4t - t^3$ b. $2t^3 + 2t$ c. 0 d. t - 2 e. $4t + t^3$

2. Find all of the eigenvalues of the matrix

		$\begin{pmatrix} 2 & 0 & 7 \\ 1 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix} \ .$	
a. 2, 3, -1	b. 2, 3, 1 c. 0, 2, 3	d2, 3, 1	e. 2, -3, 1

3. The matrix $A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ has $\lambda = 1$ as a repeated eigenvalue of multiplicity 2.

Find all of the eigenvectors of A for this eigenvalue.

a. all non-zero multiples of $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$ b. all non-zero multiples of $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$

c. all non-zero multiples of $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$

d. all non-zero linear combinations of $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$ and $\begin{pmatrix} 0\\1\\1 \end{pmatrix}$

e. all non-zero linear combinations of
$$\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$

4. Find the eigenvalues
$$\lambda$$
 and the corresponding eigenvectors ξ for the matrix $\begin{pmatrix} 2 & 0 \\ 5 & 0 \end{pmatrix}$

a.
$$\lambda = 0, \xi = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
; $\lambda = 2, \xi = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$
b. $\lambda = 0, \xi = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$; $\lambda = 2, \xi = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$
c. $\lambda = 0, \xi = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$; $\lambda = -2, \xi = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$
d. $\lambda = 1, \xi = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$; $\lambda = 2, \xi = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$
e. $\lambda = 0, \xi = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$; $\lambda = 5, \xi = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$

5. One of the following is a real solution of the equation
$$x' = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix} x$$
.

a.
$$\begin{pmatrix} \cos 2t \\ -\sin 2t \end{pmatrix}$$
 b. $\begin{pmatrix} \sin 2t \\ 2\cos 2t \end{pmatrix}$ c. $\begin{pmatrix} \cos 2t \\ \sin 2t -\cos 2t \end{pmatrix}$

d.
$$\binom{\sin 2t}{\sin 2t + \cos 2t}$$
 e. $\binom{\sin 2t + \cos 2t}{\sin 2t - \cos 2t}$

6. Find an eigenvector with eigenvalue $\lambda = 2$ for the matrix

a.
$$\begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}$$
 b. $\begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}$ c. $\begin{pmatrix} 1\\-1\\2\\3 \end{pmatrix}$ d. $\begin{pmatrix} 1\\0\\0\\7 \end{pmatrix}$ e. $\begin{pmatrix} 2\\2\\2\\2 \end{pmatrix}$

 $\begin{pmatrix} 2 & 5 & 0 & 8 \\ 3 & 6 & 0 & 2 \\ 4 & 2 & 2 & 4 \\ 1 & 0 & 0 & 7 \end{pmatrix} \ .$

PART B (Partial credit)

7.(10 points) Solve the initial value problem

$$y'' + y = 1 - u_{\pi}(t)$$

$$y(0) = 0, y'(0) = 0$$

by use of convolution.

8.(10 points) The set of vectors $x^{(1)} = (-2, 2, 2), x^{(2)} = (-1, 2, 0), x^{(3)} = (-1, -2, 4)$ is linearly dependent. Find numbers c_1, c_2, c_3 such that $c_1 x^{(1)} + c_2 x^{(2)} + c_3 x^{(3)} = 0$.

9.(4 points) a. Find the eigenvalues and eigenvectors for the matrix $A = \begin{pmatrix} 5 & 3 \\ 0 & 5 \end{pmatrix}$.

(8 points) b. Use the information from part a of this problem to find the general solution of equation $x' = \begin{pmatrix} 5 & 3 \\ 0 & 5 \end{pmatrix} x$.

10.(10 points) Find a fundamental set of solutions of the equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix} \quad x \; .$$

11.(10 points) Find a matrix T satisfying the equation

$$\mathsf{T}^{-1} \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \mathsf{T} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \; .$$