MULTIPLE CHOICE (6 points each)

The characteristic equation of a certain fourth order linear homogeneous 1. $(r^2 + 4) (r + 2)^2 = 0$. differential equation is

One of the following functions is a solution. Which one?

- $3e^{-2x} + x e^{-2x}$ a. $3e^{2x} + xe^{-2x}$
- b.
- 3e^{-x} + x² e^{-x} C.
- $3xe^{-x} + e^{-2x}$ d.
- $3e^{2x} + e^{-2x}$ e.

2. Find the Laplace transform of

$$f(t) = \delta(t - \pi) \cos t .$$

- e^{–πs} a.
- (cos π) e^{- π s} b.
- (cos π) e^{-s} c.
- d. e-s
- $-e^{\pi S}$ e.

3. Find the inverse Laplace transform of

$$\frac{e^{-2s}}{s^2 - 2s + 2}$$

- a. $u_2(t) e^{(t-2)} \sin(t-2)$
- b. $u_{-2}(t) e^t \sin t$
- c. $u_2(t 2) e^t \sin t$
- d. $u_2(t) e^t sin(t + 2)$
- e. $e^{2t} sin(t 2)$

4. Solve the initial value problem

 $y'' + y = 1 - u_{\frac{\pi}{2}}(t)$ y(0) = 0 y'(0) = 1a. $1 - \cos t + \sin t - u_{\frac{\pi}{2}}(t)(1 - \sin t)$ b. $1 + \cos t - \sin t - u_{\frac{\pi}{2}}(t)(1 - \sin t)$ c. $1 - \cos t - \sin t - u_{\frac{\pi}{2}}(t)(\frac{\pi}{2} - \sin t)$ d. $1 + \cos t - \sin t - u_{\frac{\pi}{2}}(t)(\frac{\pi}{2} - \sin t)$ e. $1 + \cos t - \sin t - u_{\frac{\pi}{2}}(t)(\frac{\pi}{2} - \sin t)$ e. $1 + \cos t - \sin t - u_{\frac{\pi}{2}}(t)$

Use the Euler method with step size h = 0.1 to get an approximation y_1 to the solution at t = 0.1 and an approximation y_2 to the solution at t = 0.2. Then y_1 and y_2 are given by:

- a. $y_1 = 1.10$, $y_2 = 1.22$
- b. $y_1 = 1.10, y_2 = 1.11$
- c. y₁ = 1.010, y₂ = 1.012
- d. y₁ = 1.10, y₂ = 1.02
- e. y₁ = 1.11, y₂ = 1.12

6. $\begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix}$ has just one eigenvalue 0 with just one independent eigenvector $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Which of the following is a solution to the system $x' = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix} x$?

a. $t \begin{pmatrix} 3 \\ 6 \end{pmatrix} - \begin{pmatrix} 0 \\ 3 \end{pmatrix}$ b. $e^{2t} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ c. $2e^t \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \end{pmatrix}$

 $d. \quad t \begin{pmatrix} 0 \\ -1 \end{pmatrix} - 2 \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad \qquad e. \quad t \begin{pmatrix} 0 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

7. The system $x' = \begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix} x$ has a complex solution $e^{it} \begin{pmatrix} 2 + i \\ 1 \end{pmatrix}$.

Which of the following is a real solution of this system?

a.
$$\begin{pmatrix} 2\cos t - \sin t \\ \cos t \end{pmatrix}$$
 b. $\begin{pmatrix} -\sin t \\ 2\cos t \end{pmatrix}$ c. $\begin{pmatrix} 5\cos t \\ \sin t \end{pmatrix}$

d.
$$\begin{pmatrix} 5 \sin t \\ \cos t - \sin t \end{pmatrix}$$
 e. $\begin{pmatrix} \sin t \\ \cos t + 2 \sin t \end{pmatrix}$

8.
$$\left\{ \begin{pmatrix} e^{-t} \\ -2 e^{-t} \end{pmatrix}$$
, $\begin{pmatrix} e^{3t} \\ 2 e^{3t} \end{pmatrix} \right\}$ is a fundamental system of solutions for $x' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} x$. Let $x = u_1 \quad \begin{pmatrix} e^{-t} \\ -2e^{-t} \end{pmatrix} + u_2 \begin{pmatrix} e^{3t} \\ 2e^{3t} \end{pmatrix}$ be a solution to $x' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} x + \begin{pmatrix} e^{t} \\ t \end{pmatrix}$. Which of the

following is the system of equations satisfied by $u^\prime{}_1$ and $~u^\prime{}_2$?

a. Error!) b. Error!)

- c. Error!) d.Error!)
- e. $e^{-t} u_1' + e^{3t} u_2' = t$ $e^{3t} u_1' - e^{-t} u_2' = e^t$
- 9. What is the type of the critical point of $x' = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} x$?

a. Proper node, unstable b. Spiral point, unstable

c. Improper node, stable

e. Center, stable

10. What is the type of the critical point of $x' = \begin{pmatrix} -2 & 9 \\ 0 & 3 \end{pmatrix} x$?

a. Saddle point, unstable b. Spiral point, unstable

c. Proper node, unstable d. Improper node, stable

e. Center, stable

11. The nonlinear system $\begin{cases} x' = y - e^{-x} \\ y' = y - \cos x \end{cases}$ corresponding linear system is:

has a critical point at (0,1). The

a.
$$\begin{cases} x' = x + y \\ y' = y \end{cases}$$
 b. $\begin{cases} x' = x \\ y' = x + y \end{cases}$ c. $\begin{cases} x' = (y - 1) - e^{-x} \\ y' = (y - 1) - \cos x \end{cases}$

d.
$$\begin{cases} x' = 0 \\ y' = 1 \end{cases}$$
 e.
$$\begin{cases} x' = x + y \\ y' = y + x \end{cases}$$

12. The system $\begin{cases} x' = x + 3 \ y + f(x,y) \\ y' = 2 \ y + g(x,y) \end{cases}$ has a critical point at (0, 0) and the corresponding linear system for this critical point is $\begin{cases} x' = x + 3 \ y \\ y' = 2 \ y \end{cases}$. Only one of the following could then hold. Which one?

a.
$$f(x, y) = x^3$$

 $g(x, y) = y^3$ b. $f(x, y) = 1$
 $g(x, y) = 2$

c.
$$f(x, y) = x^2 + y^2$$

 $g(x, y) = -3 y$
d. $f(x,y) = -2 \sin x$
 $g(x, y) = 0$

e.
$$\begin{aligned} f(x, y) &= x y\\ g(x, y) &= x \end{aligned}$$

13. The function $f(x) = 3 \tan \frac{5\pi x}{2}$ is periodic. Its fundamental (smallest) period is a. $\frac{2}{5}$ b. $\frac{4}{5}$ c. $\frac{5}{2}\pi$ d. $\frac{5}{4}\pi$ e. $\frac{1}{5}$ 14. Consider the following five functions of x:

 $f(x) = 1 + |\sin x|$; $g(x) = \sin x \cos x$; $h(x) = 2e^{2x}$; $s(x) = \ln (x^2 + 1)$;

T(x) = sin (x + 1).

Only one of the following statements concerning the odd or even nature of these functions is correct. Which one?

a. g is odd and s is even b. h is even and T is odd

c. f is odd and T is neither even nor odd d. g is odd and T is odd

e. f is even and s is odd

15. Let f be defined on the interval – $1 \le x \le 1$ by

$$f(x) = \begin{cases} \frac{1}{2}x + \frac{1}{2} \text{ for } -1 \le x < 0\\ 1 - x^2 & \text{for } 0 < x \le 1 \end{cases} \text{ and } f(x + 2) = f(x)$$

To what value does the Fourier series of f(x) converge at x = 0?

a. $\frac{3}{4}$ b. $\frac{-1}{2}$ c. 0 d. $\frac{1}{4}$ e. $\frac{2}{3}$

16. Let f(x) be an odd function on the interval – $\pi/2 < x < \pi/2$. If $f(x) = \cos x$ when x > 0, find the value of f(x) when x < 0.

a. $-\cos x$ b. $\cos x$ c. $\cos (-x)$ d. $-\cos (x + \pi)$ e. $\cos (x - \pi/2)$

17. The value of the coefficient b_9 in the sine series $\sum_{1} b_n \sin nx$ with period 2 π for the function f(x) = 6 for $0 \le x \le \pi$, is

a. $\frac{8}{3\pi}$ b. 0 c. $\frac{3}{\pi}$ d. $\frac{\pi}{6}$ e. $\frac{6}{\pi}$

18. A metal bar of length 100 cm is heated with one end held at 20° C and the other held at 70° C. After a long time (i,.e. $t \rightarrow \infty$) the temperature distribution in the bar is approximately given by

a. $\frac{x}{2} + 20$ b. 0 everywhere c. 45 everywhere d. 4x + 70 e. $\frac{x}{25} + 20$

19. A metal rod 100 cm long is heated with one end held at temperature 10° C and the other end is insulated. Therefore the boundary conditions for the problem are:

a.	u(0, t) = 10;	$u_x (100, t) = 0$	b.	u(0, t) = 10;	u (100, t) = 0
C.	$u_{X}(0,t) = 0$;	u_x (100, t) = 0	d.	u(x, t) = 0;	u (100, t) = 0
e.	$u_{X}(0,t) = 10$;	$u_x (100, t) = 0$			

(partial credit, next page)

PARTIAL CREDIT (18 points each)

20. A bar for which $\alpha^2 = 3$ is 50 cm long, has both ends held at 10° C. The bar is heated initially in such a way that u (x, 0) = 10 + 4 sin $\frac{3\pi x}{50}$. Solve the heat equation for u (x, t).

21. Let $f(x) = \sin x$ for $0 \le x \le \pi$. Find the cosine series with period 2π for f(x).