MULTIPLE CHOICE (6 points each)

1. The characteristic equation of a certain fourth order linear homogeneous differential equation is $\quad\left(r^{2}+4\right)(r+2)^{2}=0$.

One of the following functions is a solution. Which one?
a. $3 e^{-2 x}+x e^{-2 x}$
b. $3 e^{2 x}+x e^{-2 x}$
c. $3 e^{-x}+x^{2} e^{-x}$
d. $3 x e^{-x}+e^{-2 x}$
e. $3 e^{2 x}+e^{-2 x}$
2. Find the Laplace transform of

$$
f(t)=\delta(t-\pi) \cos t .
$$

a. $-\mathrm{e}^{-\pi s}$
b. $\quad-(\cos \pi) e^{-\pi s}$
c. $(\cos \pi) \mathrm{e}^{-\mathrm{S}}$
d. e^{-s}
e. -eлs
3. Find the inverse Laplace transform of $\frac{e^{-2 s}}{s^{2}-2 s+2}$
a. $\quad u_{2}(t) e^{(t-2)} \sin (t-2)$
b. $\quad u-2(t) e^{t} \sin t$
c. $u_{2}(t-2) e^{t} \sin t$
d. $\quad u_{2}(t) e^{t} \sin (t+2)$
e. $\quad e^{2 t} \sin (t-2)$
4. Solve the initial value problem

$$
\begin{aligned}
& y^{\prime \prime}+y=1-u_{\frac{\pi}{2}}(t) \\
& y(0)=0 \\
& y^{\prime}(0)=1
\end{aligned}
$$

a. $\quad 1-\cos t+\sin t-u_{\pi}(t)(1-\sin t)$
b. $\quad 1+\cos t-\sin t-u_{\frac{\pi}{2}}^{\frac{\pi}{2}}(t)(1-\sin t)$
c. $\quad 1-\cos t-\sin t-u_{\frac{\pi}{2}}(t)\left(\frac{\pi}{2}-\sin t\right)$
d. $\quad 1+\cos t-\sin t-u_{\frac{\pi}{2}}(t)\left(\frac{\pi}{2}-\sin t\right)$
e. $\quad 1+\cos t-\sin t-u_{\frac{\pi}{2}}^{2}(t)$.

5. Consider the problem

$$
\begin{aligned}
& y^{\prime}=y+t \\
& y(0)=1
\end{aligned}
$$

Use the Euler method with step size $\mathrm{h}=0.1$ to get an approximation y_{1} to the solution at $\mathrm{t}=0.1$ and an approximation y_{2} to the solution at $\mathrm{t}=0.2$. Then y_{1} and y_{2} are given by:
a. $\mathrm{y}_{1}=1.10, \mathrm{y}_{2}=1.22$
b. $\quad y_{1}=1.10, y_{2}=1.11$
c. $\quad y_{1}=1.010, \mathrm{y}_{2}=1.012$
d. $\quad y_{1}=1.10, y_{2}=1.02$
e. $\quad y_{1}=1.11, \mathrm{y}_{2}=1.12$
6. $\quad\left(\begin{array}{ll}2 & -1 \\ 4 & -2\end{array}\right)$ has just one eigenvalue 0 with just one independent eigenvector $\binom{1}{2}$.

Which of the following is a solution to the system $x^{\prime}=\left(\begin{array}{ll}2 & -1 \\ 4 & -2\end{array}\right) x \quad$?
a. $t\binom{3}{6}-\binom{0}{3}$
b. $\quad e^{2 t}\binom{1}{2}$
c. $\quad 2 e^{t}\binom{1}{2}+\binom{0}{-1}$
d. $\quad t\binom{0}{-1}-2\binom{1}{2}$
e. $\quad t\binom{0}{-1}+\binom{1}{2}$
7. The system $\quad x^{\prime}=\left(\begin{array}{ll}2 & -5 \\ 1 & -2\end{array}\right) x$ has a complex solution $e^{i t}\binom{2+i}{1}$.

Which of the following is a real solution of this system?
a. $\quad\binom{2 \cos t-\sin t}{\cos t}$
b. $\quad\binom{-\sin t}{2 \cos t}$
c. $\quad\binom{5 \cos t}{\sin t}$
d. $\binom{5 \sin t}{\cos t-\sin t}$
e. $\binom{\sin t}{\cos t+2 \sin t}$
8. $\left\{\left(\begin{array}{c}e^{-t} \\ -2\end{array} e^{-t}\right),\binom{e^{3 t}}{2 e^{3 t}}\right\} \quad$ is a fundamental system of solutions for $x^{\prime}=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right) x$. Let
$x=u_{1}\binom{e^{-t}}{-2 e^{-t}} \quad+u_{2}\binom{e^{3 t}}{2 e^{3 t}}$ be a solution to $x^{\prime}=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right) x+\binom{e^{t}}{t}$. Which of the following is the system of equations satisfied by u_{1}^{\prime} and $\mathrm{u}^{\prime} 2$?
a. Error!)
b. Error!)
c. Error!)
d.Error!)
e. $\quad \begin{array}{r}e^{-t} u_{1}^{\prime}+e^{3 t} u_{2}{ }^{\prime}=t \\ e^{3 t} u_{1^{\prime}}-e^{-t} u_{2^{\prime}}=e^{t}\end{array}$
9. What is the type of the critical point of $\quad x^{\prime}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right) x$?
a. Proper node, unstable
b. Spiral point, unstable
c. Improper node, stable
d. Saddle point, unstable
e. Center, stable
10. What is the type of the critical point of

$$
x^{\prime}=\left(\begin{array}{rr}
-2 & 9 \\
0 & 3
\end{array}\right) x \quad ?
$$

a. Saddle point, unstable
b. Spiral point, unstable
c. Proper node, unstable
d. Improper node, stable
e. Center, stable
11. The nonlinear system $\left\{\begin{array}{l}x^{\prime}=y-e^{-x} \\ y^{\prime}=y-\cos x\end{array}\right.$ has a critical point at $(0,1)$. The corresponding linear system is:
a. $\quad\left\{\begin{array}{l}x^{\prime}=x+y \\ y^{\prime}=y\end{array}\right.$
b. $\quad\left\{\begin{array}{c}x^{\prime}=x \\ y^{\prime}=x+y\end{array}\right.$
c. $\left\{\begin{array}{l}x^{\prime}=(y-1)-e^{-x} \\ y^{\prime}=(y-1)-\cos x\end{array}\right.$
d. $\quad\left\{\begin{array}{l}x^{\prime}=0 \\ y^{\prime}=1\end{array}\right.$
e. $\quad\left\{\begin{array}{l}x^{\prime}=x+y \\ y^{\prime}=y+x\end{array}\right.$
12. The system $\left\{\begin{array}{l}x^{\prime}=x+3 y+f(x, y) \\ y^{\prime}=2 y+g(x, y)\end{array}\right.$ has a critical point at $(0,0)$ and the corresponding linear system for this critical point is $\left\{\begin{array}{c}x^{\prime}=x+3 y \\ y^{\prime}=2 y\end{array}\right.$. Only one of the following could then hold. Which one?
a. $\quad f(x, y)=x^{3}$
b. $\quad \begin{array}{ll}f(x, y)=1 \\ g(x, y)=2\end{array}$
c. $\quad \begin{aligned} & f(x, y)=x^{2}+y^{2} \\ & g(x, y)=-3 y\end{aligned}$
d.
$f(x, y)=-2 \sin x$
$g(x, y)=0$
e. $\quad f(x, y)=x y$
$g(x, y)=x$
13. The function $\mathrm{f}(\mathrm{x})=3 \tan \frac{5 \pi \mathrm{x}}{2}$ is periodic. Its fundamental (smallest) period is
a. $\frac{2}{5}$
b. $\frac{4}{5}$
c. $\frac{5}{2} \pi$
d. $\quad \frac{5}{4} \pi$
e. $\frac{1}{5}$
14. Consider the following five functions of x :
$f(x)=1+|\sin x| ; \quad g(x)=\sin x \cos x ; \quad h(x)=2 e^{2 x} ; \quad s(x)=\ln \left(x^{2}+1\right) ;$
$T(x)=\sin (x+1)$.
Only one of the following statements concerning the odd or even nature of these functions is correct. Which one?
a. $\quad g$ is odd and s is even
b. $\quad \mathrm{h}$ is even and T is odd
c. $\quad f$ is odd and T is neither even nor odd
d. $\quad \mathrm{g}$ is odd and T is odd
e. f is even and s is odd
15. Let f be defined on the interval $-1 \leq x \leq 1$ by

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{2} x+\frac{1}{2} \text { for }-1 \leq x<0 \\
1-x^{2}
\end{array} \quad \text { for } 0<x \leq 1 \quad \text { and } f(x+2)=f(x)\right.
$$

To what value does the Fourier series of $f(x)$ converge at $x=0$?
a. $\quad \frac{3}{4}$
b. $\frac{-1}{2}$
c. 0
d. $\frac{1}{4}$
e. $\frac{2}{3}$
16. Let $f(x)$ be an odd function on the interval $-\pi / 2<x<\pi / 2$. If $f(x)=\cos x$ when $x>0$, find the value of $f(x)$ when $x<0$.
a. $-\cos x$
b. $\cos x$
c. $\cos (-x)$
d. $\quad-\cos (x+\pi)$
e. $\cos (x-\pi / 2)$
17. The value of the coefficient b_{g} in the sine series $\sum_{1} b_{n} \sin n x$ with period 2π for the function $f(x)=6$ for $0 \leq x \leq \pi$, is
a. $\frac{8}{3 \pi}$
b. 0
c. $\frac{3}{\pi}$
d. $\frac{\pi}{6}$
e. $\frac{6}{\pi}$
18. A metal bar of length 100 cm is heated with one end held at $20^{\circ} \mathrm{C}$ and the other held at $70^{\circ} \mathrm{C}$. After a long time (i,.e. $\mathrm{t} \rightarrow \infty$) the temperature distribution in the bar is approximately given by
a. $\frac{x}{2}+20$
b. 0 everywhere
c. 45 everywhere
d. $4 x+70$
e. $\frac{x}{25}+20$
19. A metal rod 100 cm long is heated with one end held at temperature $10^{\circ} \mathrm{C}$ and the other end is insulated. Therefore the boundary conditions for the problem are:
a. $u(0, t)=10 ; u_{x}(100, t)=0$
b. $u(0, t)=10$;
$u(100, t)=0$
c. $\quad u_{x}(0, t)=0 ; u_{x}(100, t)=0$
d. $\quad u(x, t)=0$;
$u(100, t)=0$
e. $u_{x}(0, t)=10 ; u_{x}(100, t)=0$

(partial credit, next page)

PARTIAL CREDIT (18 points each)
20. A bar for which $\alpha^{2}=3$ is 50 cm long, has both ends held at $10^{\circ} \mathrm{C}$. The bar is heated initially in such a way that $u(x, 0)=10+4 \sin \frac{3 \pi x}{50}$. Solve the heat equation for $u(x, t)$.
21. Let $f(x)=\sin x$ for $0 \leq x \leq \pi$. Find the cosine series with period 2π for $f(x)$.

