Multiple Choice . (9 points each)

In problems 1 and 2 refer to the sketches of trajectories on page 2 of the exam. Note that directions of eigenvectors are only approximate.

- The trajectories of the system $x' = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} x$ are of the type 1.
- a. (2)
- b. (1) c. (8) d. (4) e. (5)

- The trajectories of the system $x' = \begin{pmatrix} 0 & -3 \\ 3 & 0 \end{pmatrix} x$ are of the type 2.
- a. (2)
- b. (6) c. (8) d. (7) e. (3)

- What is the type and stability of the point (0, 0) for the system $x' = \begin{pmatrix} -2 & 0 \\ 1 & -1 \end{pmatrix} \times ?$ 3.
- a. center, stable

- b. improper node, stable
- c. improper node, unstable
- d. spiral, unstable
- e. saddle point, unstable
- The trajectory of the system $x' = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$ x passing through the point (0, 1) 4. is tangent to the vector

 - a. $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$ b. $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$ c. $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$ d. $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ e. $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$

5. Find all of the critical points of the system

$$x' = (x-1) y$$

 $y' = x (y^3 + 1)$

- a. only (0,0) b. (0,0) and (1,-1) c. (0,0), (1,-1) and (1.1)
- d. (0,0) and (1,0)e. (0,0) and (0,1)
- 6. Let ϕ (t) be the solution to the intial value problem

$$\begin{cases} y' = y^2 + t \\ y(0) = 0 \end{cases}$$

- What is the approximate value of ϕ (2) using the Euler method with stepsize h = 1.0?
 - a. 0.2
- b. 0.5
- c. 1.
- d. 2
- e. 3

- 7. If the method of separation of variables is used on the equation
 - $2 u_{xx} 3 u_t = 0$ by setting u(x,t) = X(x) T(t), the resulting pair of ordinary differential equations are

a.
$$\frac{3X''}{T} = \frac{2T'}{X} = constant$$
 b. $\frac{2X''}{3X} = \frac{T''}{T} = constant$

b.
$$\frac{2X''}{3X} = \frac{T''}{T} = constant$$

c.
$$\frac{X''}{X} = \frac{T'}{T} = constant$$

d.
$$\frac{2X''}{3X} = \frac{T'}{T} = constant$$

e.
$$\frac{3X''}{2X} = \frac{2T''}{3T} = constant$$

PARTIAL CREDIT

8. Consider the nonhomogeneous system

$$x' = \begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix} \quad x \;\; + \;\; \begin{pmatrix} 5e^{\;-2t} \\ 0 \end{pmatrix}$$

We want to solve it using the method of variation of parameters. A fundamental system of solutions to the homogeneous system is $x^{(1)} = \begin{pmatrix} e^{-3t} \\ -4 & e^{-3t} \end{pmatrix}$, $x^{(2)} = \begin{pmatrix} e^{2t} \\ e^{2t} \end{pmatrix}$

Let x (t) = $u_1 x^{(1)} + u_2 x^{(2)}$ be a solution.

- a. (5 points) Write equations satisfied by u'_1 and u'_2 .
- b. (4 points) Find u_1 and u_2 .
- c. (5 points) Find the general solution of the given nonhomogeneous system.
- 9. Consider the autonomous system

$$x' = F(x, y) = -\sin x + \cos y + y - 1$$

 $y' = G(x, y) = x - \pi + y^2$

- a. (4 points) Show that $x = \pi$, y = 0 is a critical point.
- b. (5 points) What is the corresponding linear system near (π , 0)?
- c. (5 points) What is the type of the critical point $(\pi, 0)$ of the given system?
- 10. (9 points) Suppose that ϕ (t) is the solution to the initial value problem $\begin{bmatrix} y'=y+t+1\\y\left(0\right)=1 \end{bmatrix}$

Find an approximate value of ϕ (1.0) using the improved Euler method with stepsize h = 1.0.