In problems 1 and 2 refer to the sketches of trajectories on page 2 of the exam. Note that directions of eigenvectors are only approximate.

1. The trajectories of the system $\mathrm{x}^{\prime}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \mathrm{x}$ are of the type
a. (2)
b. (1)
c. (8)
d. (4)
e. (5)
2. The trajectories of the system $x^{\prime}=\left(\begin{array}{rr}0 & -3 \\ 3 & 0\end{array}\right) x$ are of the type
a. (2)
b. (6)
c. (8)
d. (7)
e. (3)
3. What is the type and stability of the point $(0,0)$ for the system $x^{\prime}=\left(\begin{array}{cc}-2 & 0 \\ 1 & -1\end{array}\right) x$?
a. center, stable
b. improper node, stable
c. improper node, unstable
d. spiral, unstable
e. saddle point, unstable
4. The trajectory of the system $x^{\prime}=\left(\begin{array}{rr}-1 & -1 \\ 1 & -1\end{array}\right) \times$ passing through the point $(0,1)$ is tangent to the vector
a. $\binom{-1}{-1}$
b. $\binom{0}{-1}$
c. $\binom{-1}{0}$
d. $\binom{1}{-1}$
e. $\binom{1}{-2}$
5. Find all of the critical points of the system

$$
\begin{aligned}
& x^{\prime}=(x-1) y \\
& y^{\prime}=x\left(y^{3}+1\right)
\end{aligned}
$$

a. only $(0,0)$
b. $(0,0)$ and $(1,-1)$
c. $(0,0),(1,-1)$ and (1.1)
d. $(0,0)$ and $(1,0)$ e. $(0,0)$ and $(0,1)$
6. Let $\phi(\mathrm{t})$ be the solution to the intial value problem

$$
\left(\begin{array}{l}
y^{\prime}=y^{2}+t \\
y(0)=0
\end{array}\right.
$$

What is the approximate value of $\phi(2)$ using the Euler method with stepsize $\mathrm{h}=$ 1.0?
a. 0.2
b. 0.5
c. 1 .
d. 2
e. 3
7. If the method of separation of variables is used on the equation $2 u_{x x}-3 u_{t}=0$ by setting $u(x, t)=X(x) T(t)$, the resulting pair of ordinary differential equations are
a. $\frac{3 \mathrm{X}^{\prime \prime}}{\mathrm{T}}=\frac{2 \mathrm{~T}^{\prime}}{\mathrm{X}}=$ constant
b. $\frac{2 X^{\prime \prime}}{3 X}=\frac{T "}{T}=$ constant
c. $\frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{T}=$ constant
d. $\frac{2 X^{\prime \prime}}{3 X}=\frac{\mathrm{T}^{\prime}}{\mathrm{T}}=$ constant
e. $\frac{3 X^{\prime \prime}}{2 X}=\frac{2 T^{\prime \prime}}{3 T}=$ constant

PARTIAL CREDIT

8. Consider the nonhomogeneous system

$$
x^{\prime}=\left(\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right) x+\binom{5 e^{-2 t}}{0}
$$

We want to solve it using the method of variation of parameters. A fundamental system of solutions to the homogeneous system is $x^{(1)}=\binom{e^{-3 t}}{-4 e^{-3 t}}, \quad x^{(2)}=\binom{e^{2 t}}{e^{2 t}}$
Let $\mathrm{x}(\mathrm{t})=\mathrm{u}_{1} \mathrm{x}^{(1)}+\mathrm{u}_{2} \mathrm{x}^{(2)}$ be a solution.
a. (5 points) Write equations satisfied by $u^{\prime}{ }_{1}$ and $u^{\prime}{ }_{2}$.
b. (4 points) Find u_{1} and u_{2}.
c. (5 points) Find the general solution of the given nonhomogeneous system.
9. Consider the autonomous system

$$
\begin{aligned}
& x^{\prime}=F(x, y)=-\sin x+\cos y+y-1 \\
& y^{\prime}=G(x, y)=x-\pi+y^{2}
\end{aligned}
$$

a. (4 points) Show that $\mathrm{x}=\pi, \mathrm{y}=0$ is a critical point.
b. (5 points) What is the corresponding linear system near $(\pi, 0)$?
c. (5 points) What is the type of the critical point $(\pi, 0)$ of the given system?
10. (9 points) Suppose that $\phi(\mathrm{t})$ is the solution to the initial value problem

$$
\left[\begin{array}{c}
y^{\prime}=y+t+1 \\
y(0)=1
\end{array}\right.
$$

Find an approximate value of ϕ (1.0) using the improved Euler method with stepsize $h=1.0$.

