Multiple Choice 8 points each.

- 1. The Laplace transform of $f(t) = t^3 e^{2t}$ is

- (a) $\frac{6}{(s-2)^3}$ (b) $\frac{3}{(s-2)^4}$ (c) $\frac{6}{(s-2)^4}$ (d) $\frac{6}{(s+2)^4}$ (e) $\frac{1}{(s-2)^4}$
- 2. If f (t) has Laplace transform F (s) = $\frac{s}{s^3 + 1}$ then the Laplace transform of (a) $\frac{e^{2t}f(t)}{(s-2)^3+1}$ (b) $\frac{s}{s^3+2}$ (c) $\frac{s}{(s-2)^3+1}$

- (d) $\frac{s+2}{(s+2)^3+1}$ (e) $\frac{2s}{4s^3+1}$

- 3. The inverse Laplace transform of $F(s) = \frac{2 e^{-2s}}{s^2 4}$ is
- (a) $u_2(t) \cosh (2t-2)$ (b) $u_2(t) \sin (2t-2)$ (c) $u_2(t) \sinh (2t+2)$ (d) $u_2(t) \cosh 2(t-2)$ (e) $u_2(t) \sinh 2(t-2)$

4. The value of the improper integral

$$\int_{0}^{\bullet} e^{(t-2)^{2} \sin \frac{\pi t}{6}} \delta(t-3) dt is$$

- (a) 0 (b) e (c) $\frac{e^2}{6}$ (d) ∞ (e) $e^{(t-2)^2} \sin \frac{\pi t}{6}$
- 5. The solution of the initial value problem $y'' + y = \delta(t - \pi) \cos t$; y(0)' = 0, y'(0) = 1

(a)
$$\sin t + u_{\pi}(t) \cos t$$
 (b) $2 \sin t$ (c) $2 \cos t$

(d) $\sin t + u_{\pi}(t) \sin t$ (e) $\cos t + u_{\pi}(t) \cos t$

6. The Laplace transform of
$$f(t) = \int_{0}^{t} e^{-(t-\tau)} \sin \tau \ d\tau$$

(a)
$$\frac{1}{(s+1)(s^2+1)}$$

(b)
$$\frac{1}{s(s^2+1)}$$

(a)
$$\frac{1}{(s+1)(s^2+1)}$$
 (b) $\frac{1}{s(s^2+1)}$ (c) $\int_{0}^{t} e^{-s} \sin s \, ds$

(d)
$$\frac{1}{(s-1)(s^2+1)}$$

(d)
$$\frac{1}{(s-1)(s^2+1)}$$
 (e) $\frac{s}{(s+1)(s^2+1)}$

7. The largest linearly independent subset of the set of vectors
$$X^{(1)}=(1,1,1), \qquad X^{(2)}=(5,-2,5), \qquad X^{(3)}=(1,-1,1) \qquad X^{(4)}=(1,0,1)$$
 has exactly

- (a) no members(b) one member(d) four members(e) two members
- (c) three members

- 8. One solution of $X' = \begin{pmatrix} 1 & -4 \\ 4 & -7 \end{pmatrix} X$ is
- $X^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ e^{-3t}. A linearly independent second solution $X^{(2)}$ is

(a)
$$\binom{1}{1}$$
 te^{-3t} - $\binom{0}{14}$ e^{-3t}

(b)
$$\binom{4}{1}$$
 te^{-3t} + $\binom{1}{1}$ e^{-3t}

(c)
$$\begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$
 te^{-3t} - $\begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix}$ e^{-3t}

(d)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 te^{-3t} + $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$ e^{-3t}

(e)
$$\binom{1}{1}$$
 te^{-3t} + $\binom{1}{1}$ e^{-3t}

9. A real solution of $X' = \begin{pmatrix} -1 & -4 \\ 1 & -1 \end{pmatrix}$ X is (a) $\begin{pmatrix} 2\cos 2t \\ -\sin 2t \end{pmatrix}$ e^{-t} (b) $\begin{pmatrix} 2\cos 2t \\ \sin 2t \end{pmatrix}$ e^{-t}

(a)
$$\begin{pmatrix} 2 \cos 2t \\ -\sin 2t \end{pmatrix}$$
 e^{-t}

(b)
$$\begin{pmatrix} 2\cos 2t \\ \sin 2t \end{pmatrix}$$
 e^{-t}

(c)
$$\begin{pmatrix} \cos 2t \\ \sin 2t \end{pmatrix}$$
 e^{-t}

(d)
$$\begin{pmatrix} \sin 2t \\ 2\cos 2t \end{pmatrix}$$
 e^t

(c)
$$\begin{pmatrix} \cos 2t \\ \sin 2t \end{pmatrix}$$
 e^{-t} (d) $\begin{pmatrix} \sin 2t \\ 2\cos 2t \end{pmatrix}$ e^{t} (e) $\begin{pmatrix} -2\sin 2t \\ \cos 2t \end{pmatrix}$ e^{-t}

10. A fundamental system of solutions of $X' = \begin{pmatrix} 2 & 1 \\ 0 & -3 \end{pmatrix}$ X is $X^{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ e^{2t} , $X^{(2)} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$ e^{-3t} . A fundamental matrix Φ (t) such that $\Phi(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is

$$\text{(a)} \ \, \begin{pmatrix} e^{-3t} & 0 \\ 0 & e^{2t} \end{pmatrix} \qquad \text{(b)} \ \, \begin{pmatrix} e^{2t} & 5(e^{2t} - e^{-3t}) \\ 0 & e^{-3t} \end{pmatrix} \qquad \text{(c)} \ \, \begin{pmatrix} (2 \ e^{2t} - e^{-3t}) & 0 \\ (e^{-3t} - e^{2t}) & e^{-3t} \end{pmatrix}$$

(d)
$$\begin{pmatrix} e^{2t} & \frac{1}{5} (e^{2t} - e^{-3t}) \\ 0 & e^{-3t} \end{pmatrix}$$
 (e) $\begin{pmatrix} e^{2t} & (e^{2t} - 1) \\ (e^{-3t} - e^{2t}) & e^{-3t} \end{pmatrix}$

$$\begin{pmatrix} e^{-3t} & 0 \\ 0 & e^{2t} \end{pmatrix}$$

11. The point (-3,7) is a critical point for the nonlinear system

$$x' = x^2 + 5x + 6$$

 $y' = x + y - 4$

This point is

(a) A stable spiral point
(b) A saddle point
(c) An unstable improper node
(d) a center
(e) A stable proper node

12. Suppose that $\phi(x)$ satisfies the initial value problem

$$y' = y + 4t$$
 $y(0) = 3$

y' = y + 4t y(0) = 3Use Euler's method with stepsize h = 1 and two iterations to estimate $\phi(2)$.

The result is $\phi(2) \cong$

(a) 2 (b) $\frac{4}{4}$ (c) 0 (d) -7 (e) 16

13. The value of the coefficient b_7 in the sine series with period $2\pi\,$

- (a) $\frac{12}{7}$ (b) $\frac{4}{7}$ (c) $\frac{-4}{7}$ (d) 0 (e) $\frac{3\pi}{7}$

14. Let
$$f(x) = \begin{cases} 5 \cos \frac{x}{3} & 0 \le x < \frac{3\pi}{2} \\ 0 & \frac{3\pi}{2} \le x < 3\pi \end{cases}$$

be periodic with period 3π . The value of f(x) at $x=3\pi$ so that the Fourier series for f converges to f at every point is $f(3\pi)=$

- (a) $\frac{5}{7}$ (b) 5 (c) 0 (d) $\frac{-5}{7}$ (e) -5

15. For the heat conduction problem with insulated ends

$$u_{XX} = u_t, \qquad u_X(o,t) = 0, \qquad u_X(3,t) = 0$$

$$u_x(3,t)=0$$

the solutions are of the form (set $\lambda = \frac{n\pi}{3}$): $u_n(x,t) =$

- (a) $e^{-\lambda^2 t} \sin 3\lambda x$ (b) $e^{-\lambda^2 t} \cos \lambda x$ (c) $e^{-3\lambda^2 t} \cos \lambda t$ (d) $e^{-\lambda^2 t^2} \sin \lambda x$ (e) $e^{-\lambda^2 x^2} \cos \lambda t$

16. A 75 cm bar of metal for which α^2 =2 has one end held at 5°c and the other held at 40°c. The bar is initially heated in such a way that

$$u(x,0) = f(x) = -2 \sin(\frac{6 \pi x}{75})$$
.

- (a) (18 points) Solve the heat conduction problem for u(x,t)
- (b) (6 points) find the steady state temperature distribution in the bar

17. Let
$$f(x) = 1 - x^2$$
 for $0 \le x \le 2$.

(6 points) Define a periodic extension of f with period 4 which is neither even nor odd. Sketch the graph for three periods; one of which is to the left of x=0 and one is to the right.