1. (9 points) Compute the Wronskian of the vectors

$$
\mathbf{x}^{1}=\left[\begin{array}{c}
\mathrm{t}^{2} \\
\mathrm{t} \\
0
\end{array}\right] \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-\mathrm{t} \\
1 \\
0
\end{array}\right] \quad \mathbf{x}^{(3)}=\left[\begin{array}{c}
0 \\
0 \\
e^{\mathrm{t}}
\end{array}\right]
$$

a. $2 t^{2} e^{t}$
b. 0
c. $\left(t^{2}+1\right) e^{t}$
d. $\left(t^{3}-t^{2}\right) e^{t}$
e. $-2 t e^{t}$
2. (9 points) Find all of the eigenvalues of the matrix
$\left[\begin{array}{rrr}-1 & -3 & 2 \\ 0 & 2 & 0 \\ 3 & 0 & -2\end{array}\right]$.
a. 1, 2 and - 4
b. 1, 2 and 3
c. 1,2 and -3
d. $-1,-2$ and 4
e. 1, 2 and 4
3. (9 points) The matrix $A=\left[\begin{array}{rrr}-2 & 1 & 4 \\ 0 & -2 & -3 \\ 0 & 0 & 2\end{array}\right]$ has $r=-2$ as a repeated
eigenvalue of multiplicity two. Find all of the eigenvectors \vee of A corresponding to this eigenvalue (the arbitary constants appearing in each of the answers may be assumed to be not all zero).
a. $\quad v=c_{1}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
b. $\quad v=c_{1}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$
c. $v=c_{1}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
d. $\quad v=c_{1}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
e. $v=c_{1}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$
4.(9 points) Find the inverse of the matrix $\quad\left[\begin{array}{cc}1 & 2 \\ -3 & 4\end{array}\right]$.
a. $\left[\begin{array}{cc}\frac{4}{10} & \frac{-2}{10} \\ \frac{3}{10} & \frac{1}{10}\end{array}\right]$
b. $\left[\begin{array}{cc}\frac{1}{10} & \frac{-2}{10} \\ \frac{3}{10} & \frac{4}{10}\end{array}\right]$
c. $\left[\begin{array}{cc}\frac{-1}{10} & \frac{-2}{10} \\ \frac{3}{10} & \frac{-4}{10}\end{array}\right]$
d. $\left[\begin{array}{cc}\frac{4}{10} & \frac{-2}{10} \\ \frac{-3}{10} & \frac{1}{10}\end{array}\right]$
e. $\left[\begin{array}{cc}\frac{3}{10} & \frac{-4}{10} \\ \frac{1}{10} & \frac{-2}{10}\end{array}\right]$
5. (9 points) Find the general solution of $\quad x^{\prime}=\left[\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right] \quad x \quad$.

NOTE: Be aware that the general solution that you find should be one of the answers below. . . . perhaps after a suitable re-naming of your arbitrary constants.
a. $e^{t}\left[\begin{array}{l}-c_{1} \sin 2 t+c_{2} \cos 2 t \\ c_{1} \cos 2 t+c_{2} \sin 2 t\end{array}\right]$
b. $e^{-t}\left[\begin{array}{l}-c_{1} \sin 2 t+c_{2} \cos 2 t \\ c_{1} \cos 2 t+c_{2} \sin 2 t\end{array}\right]$
c. $e^{t}\left[\begin{array}{c}c_{1} \sin 2 t+c_{2} \cos 2 t \\ c_{1} \cos 2 t+c_{2} \sin 2 t\end{array}\right]$
d. $e^{2 t}\left[\begin{array}{c}-c_{1} \sin t+c_{2} \cos t \\ c_{1} \cos t+c_{2} \sin t\end{array}\right]$
e. $\quad e^{t}\left[\begin{array}{c}c_{1} \sin t+c_{2} \cos t \\ -c_{1} \cos t+c_{2} \sin t\end{array}\right]$
6. (9 points) Which statement is true for the following system

$$
x^{\prime}=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right] \mathbf{x}
$$

a. The origin is a saddle point
c. The origin is a proper node
e. The origin is not a critical point
b. The origin is an improper node
d. The origin is a spiral point
7. (9 points) Using row reduction on the augmented matrix (or otherwise) find the number k such that the system

$$
\begin{aligned}
& x_{1}-2 x_{2}+3 x_{3}=k \\
& -x_{1}+x_{2}-2 x_{3}=-1 \\
& 2 x_{1}-x_{2}+3 x_{3}=0
\end{aligned}
$$

has a solution.
a. $\mathrm{k}=3$
b. $\mathrm{k}=2$
c. $\mathrm{k}=1$
d. $k=0$
e. $k=-1$
8.(9 points) The matrix $A=\left[\begin{array}{ll}1 & -4 \\ 4 & -7\end{array}\right]$ has $r=-3$ as an eigenvalue of multiplicity two with corresponding eigenvector $\xi=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Which of the pictures below most closely resembles the phase portrait of the system

$$
x^{\prime}=\left[\begin{array}{lll}
1 & -4 \\
4 & -7
\end{array}\right] x
$$

a.
b.
C.
d.
e.

PARTIAL CREDIT

9. (14 points) Find the general solution of the system $x^{\prime}=\left[\begin{array}{cc}2 & 0 \\ -1 & 2\end{array}\right] \quad x$.
10.(14 points) Find the general solution of the non-homogeneous system

$$
x^{\prime}=\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right] x+\left[\begin{array}{c}
2 e^{-2 t} \\
0
\end{array}\right]
$$

evaluating all integrals that occur.
Hint: A fundamental matrix of the system $\mathbf{x}^{\prime}=\left[\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right] \mathbf{x}$ is $\quad \psi(\mathrm{t})=\left[\begin{array}{cc}\mathrm{e}^{-3 \mathrm{t}} & \mathrm{e}^{-\mathrm{t}} \\ -\mathrm{e}^{-3 \mathrm{t}} & \mathrm{e}^{-\mathrm{t}}\end{array}\right] \quad$.

