1. (9 points) For the system

$$
\begin{aligned}
& x^{\prime}=x-y \\
& y^{\prime}=-x+3 x^{2} y
\end{aligned}
$$

the critical point $(0,0)$ is :
a. a proper node
b. a saddle point
c. an improper node
d. a spiral point
e. a centre
2. (9 points) List the set of all critical points of the system

$$
\begin{aligned}
& x^{\prime}=\sin ^{2} y \\
& y^{\prime}=\left(x^{2}-4\right)\left(y^{2}-1\right) .
\end{aligned}
$$

a. $(2,1),(2,-1),(-2,1)$ and $(-2,-1)$
b. $\quad(2, \pm n \pi)$ and $(-2, \pm n \pi)$
c. $(2,0)$ and $(-2,0)$
d. $\left(-2, \pm n \frac{\pi}{2}\right)$ and
$\left(2, \pm n \frac{\pi}{2}\right)$
e. $(2, \pm \mathrm{n} \pi)$ and ($-2,0)$

Remark: In these answers n stands for all positive integers and zero.
3. (9points) Which of the sketches below best describes the trajectories of the system

$$
\begin{aligned}
& x^{\prime}=x-10 y+\sin ^{2} y \\
& y^{\prime}=10 x+y+\sin ^{2} x
\end{aligned}
$$

in the vicinity of the critical point $(0,0) ?$
a.
b.
c.
d.
e.
4. (9 points) Let $u(x, t)$ denote the solution of the heat conduction problem

$$
\begin{aligned}
& u_{x x}=u_{t} \quad 0<x<1, t>0 \\
& u(0, t)=u(1, t)=0 \\
& u(x, 0)=\sin \pi x-\sin 2 \pi x \\
& 2
\end{aligned}
$$

Then the value of $u(x, t)$ when $x=\frac{1}{2}$ is :
a. 0
b. $e-4 \pi^{2} t$
c. $e 4 \pi^{2} t$
d. $e^{-\pi^{2} t}$
e. $-e^{-\pi^{2} t}$
5. (9 points) Which of the following is true for the function

$$
f(x)=x^{2}+\cos x+\sin ^{2} x
$$

a. It has period 2π
b. It is neither even nor odd
c. It has a periodic 1
d. It is even
e. It is odd
6. (9 points) Let f and g be odd functions with the same period.
a. The Fourier series of $f-g$ contains only nonzero cosine terms
b. The Fourier series of $\mathrm{f} g$ contains both nonzero cosine and nonzero sine terms
c. The Fourier series of $f+g$ contains only nonzero sine terms
d. The Fourier series of $f-g$ contains both nonzero cosine and nonzero sine terms
e. The Fourier series of $\mathrm{f} g$ contains only nonzero sine terms
7. (9 points) The value of the intergral $\int_{-4}^{4} \cos 17 \pi x \sin 17 \pi x d x$
a. 8
b. 0
c. $\frac{1}{8}$
d. $\frac{17}{4}$
e. $\frac{4}{17}$
8. (9 points) Find the coefficient b_{3} of the Fourier series of the function $f(x)$ defined by

$$
\begin{array}{lr}
f(x)=x & -1 \leq x<1 \\
f(x+2)=f(x) & \text { for all } x .
\end{array}
$$

a. $\frac{1}{3 \pi}$
b. $\frac{-2}{3 \pi}$
c. 0
d. $\frac{2}{3 \pi}$
e. $-\frac{1}{3 \pi}$

PARTIAL CREDIT

9. (14 points) The point $(0,0)$ is a critical point of the system

$$
\begin{aligned}
& x^{\prime}=-x^{5} \\
& y^{\prime}=-y^{5}
\end{aligned}
$$

Verify that this is an asymptotically stable critical point of this system by choosing a suitable Liapunov function of the form $\quad V(x, y)=a x^{2}+b y^{2}$.
10. (14 points) Write down the solution (as an infinite series) of the following heat conduction problem:

$$
\begin{aligned}
& u_{x x}=u_{t} \text { for } 0<x<1, t>0 \\
& u(0, t)=u(1, t)=0 \text { for } t>0 \\
& u(x, 0)=1 \text { for } 0<x<1 .
\end{aligned}
$$

Evaluate all integrals arising.

