MATH 325

PRACTICE TEST 2

1. (9 points) Compute the Wronskian of the vectors

$$\mathbf{x}^{1} = \begin{bmatrix} t^{2} \\ t \\ 0 \end{bmatrix} \qquad \mathbf{x}^{(2)} = \begin{bmatrix} -t \\ 1 \\ 0 \end{bmatrix} \qquad \mathbf{x}^{(3)} = \begin{bmatrix} 0 \\ 0 \\ e^{t} \end{bmatrix} \qquad .$$
a. $(t^{3} - t^{2}) e^{t}$ b. 0 c. $(t^{2} + 1) e^{t}$ d. $2t^{2}e^{t}$ e. $-2t e^{t}$
2. (9 points) Find all of the eigenvalues of the matrix $\begin{bmatrix} -1 & -3 & 2 \\ 0 & 2 & 0 \\ 3 & 0 & -2 \end{bmatrix}$
a. 1, 2 and -4 b. 1, 2 and 3 c. 1, 2 and -3
d. -1, -2 and 4 e. 1, 2 and 4
3. (9 points) The matrix $A = \begin{bmatrix} -2 & 1 & 4 \\ 0 & -2 & -3 \\ 0 & 0 & 2 \end{bmatrix}$ has $r = -2$ as a repeated

eigenvalue of multiplicity two. Find all of the eigenvectors v of A corresponding to this eigenvalue (the arbitary constants appearing in each of the answers may be assumed to be not all zero).

a. $v = c_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ b. $v = c_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ c. $v = c_1 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ d. $v = c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ e. $v = c_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

4.(9 points) Find the inverse of the matrix

$$\begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$$

November 30, 2004							
a.	$\begin{bmatrix} -1\\10\\\frac{3}{10}\end{bmatrix}$	$\begin{bmatrix} -2\\10\\-4\\10 \end{bmatrix}$	b.	$\begin{bmatrix} 1\\10\\3\\10\end{bmatrix}$	$\begin{bmatrix} -2\\10\\4\\10 \end{bmatrix}$		
C.	$\begin{bmatrix} 4\\10\\\frac{3}{10}\end{bmatrix}$	$\begin{bmatrix} -2\\ 10\\ \frac{1}{10} \end{bmatrix}$	d.	$\begin{bmatrix} 4\\10\\-3\\10\end{bmatrix}$	$\begin{bmatrix} -2\\10\\1\\1\\1\\10 \end{bmatrix}$		
e.	$\begin{bmatrix} 3\\10\\1\\1\\10\end{bmatrix}$	$\begin{bmatrix} -4\\10\\-2\\10 \end{bmatrix}$			F 1	2 1	
5.(9 points) Find the general solution of $\mathbf{x}' = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} \mathbf{x}$.					•		

NOTE: Be aware that the general solution that you find should be one of the answers below. . . . perhaps after a suitable re-naming of your arbitrary constants.

a.	$e^{t} \begin{bmatrix} c_1 \sin t + c_2 \cos t \\ -c_1 \cos t + c_2 \sin t \end{bmatrix}$]	b. $e^{-t} \begin{bmatrix} -c_1 \sin 2t + c_2 \cos 2t \\ c_1 \cos 2t + c_2 \sin 2t \end{bmatrix}$	
C.	$e^{t} \begin{bmatrix} c_1 & \sin 2t + c_2 & \cos 2t \\ c_1 & \cos 2t + c_2 & \sin 2t \end{bmatrix}$]	d. $e^{2t} \begin{bmatrix} -c_1 \sin t + c_2 \cos t \\ c_1 \cos t + c_2 \sin t \end{bmatrix}$]
e.	$e^{t} \begin{bmatrix} -c_{1} \sin 2t + c_{2} \cos 2t \\ c_{1} \cos 2t + c_{2} \sin 2t \end{bmatrix}$]		

6. (9 points)	A fundamental matrix for the system	$x' = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix} x$ is
a. $\begin{pmatrix} e^t & e^{-2t} \\ e^t & e^{-2t} \end{pmatrix}$	b. $\begin{pmatrix} e^t & e^{-2t} \\ e^{-2t} & e^t \end{pmatrix}$	c. $\begin{pmatrix} e^t & 0\\ 0 & e^{-2t} \end{pmatrix}$

d.
$$\begin{pmatrix} e^{-2t} & 0 \\ 0 & e^t \end{pmatrix}$$
 e. $\begin{pmatrix} e^{-t} & 0 \\ 0 & e^{2t} \end{pmatrix}$

7. (9 points) Using row reduction on the augmented matrix (or otherwise) find the number k such that the system

- $x_1 2x_2 + 3x_3 = k$ $-x_1 + x_2 - 2x_3 = -1$ $2x_1 - x_2 + 3x_3 = 0$ has a solution. b. k= 3 c. k= 1 d. k= 0 e. k= -1 a. k= 2 8.(9 points) The eigenvalues of the matrix A = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$ are a. All real and unequal b. All real and equal c. 1 + 2i, 1 - 2i and 1 d. 1 + i, 1 - i and 1 e. 1, i and - i PARTIAL CREDIT 9. (14 points) Find the general solution of the system $\mathbf{x}' = \begin{bmatrix} 2 & 0 \\ -1 & 2 \end{bmatrix} \mathbf{x}$. Find the general solution of the non-homogeneous system 10.(14 points) $\mathbf{x}' = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 2e^{-2t} \\ 0 \end{bmatrix}$ evaluating all integrals that occur.
- Hint: A fundamental matrix of the system $\mathbf{x}' = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} \mathbf{x}$
 - is $\psi(t) = \begin{bmatrix} e^{-3t} & e^{-t} \\ -e^{-3t} & e^{-t} \end{bmatrix}$

November 30, 2004