Math 325: Differential EquationsName:Exam IIOct. 31, 1996Section:

There are 8 problems worth total of 85 points. You start with 15 points.

- 1. (10 points)
 - a) Use the Laplace transform to solve the initial value problem

 $y'' - 2y' + 10y = \delta(t), \quad y(0) = y'(0) = 0$

where $\delta(t)$ is the Dirac delta function.

b) Let f(t) be an unspecified function that has a Laplace transform. Express the solution to the following initial value problem as an integral.

$$y'' - 2y' + 10y = f(t), \quad y(0) = y'(0) = 0$$

2. (15 points) Solve the following initial value problem using Laplace transforms.

$$y'' + 3y' + 2y = g(t), \quad y(0) = 0, y'(0) = 1$$

where

$$g(t) = \begin{cases} 1 & 0 \le t \le 1\\ 0 & t \ge 1 \end{cases}$$

3. (10 points) Let
$$\mathbf{X}^{(1)}(t) = \begin{bmatrix} t \\ t \\ t^2 \end{bmatrix}$$
, $\mathbf{X}^{(2)}(t) = \begin{bmatrix} t^2 \\ t \\ t \end{bmatrix}$, $\mathbf{X}^{(3)}(t) = \begin{bmatrix} t \\ t^2 \\ t \end{bmatrix}$,

a) Compute the Wronskian of $\mathbf{X}^{(1)}(t)$, $\mathbf{X}^{(2)}(t)$, $\mathbf{X}^{(3)}(t)$.

b) For what values of t are the vectors $\mathbf{X}^{(1)}(t)$, $\mathbf{X}^{(2)}(t)$, $\mathbf{X}^{(3)}(t)$ linearly dependent.

c) On what intervals are the vector functions $\mathbf{X}^{(1)}(t)$, $\mathbf{X}^{(2)}(t)$, $\mathbf{X}^{(3)}(t)$ linearly independent.

4. (10 points) Classify the following systems of first order equations using as many of the following terms as apply: linear, non-linear, homogeneous, non-homogeneous. (Do not try to solve the equations!)

a)

$$\begin{aligned} x_1' &= tx_1 + (t^2 - e^t)x_2 \\ x_2' &= -(t^3 - e^{-t})x_1 + \frac{1}{t}x_2 \end{aligned}$$

b)

$$x'_1 = \cos(t)x_2 - \sin(t)$$

 $x'_2 = \sin(t)x_1 + \cos(t)$

c)

$$x'_1 = 1/x_2$$

 $x'_2 = 1/x_1$

5. (10 points) Find the eigenvalues and corresponding eigenvectors of the matrix

	4	0	0]	
$\mathbf{A} =$	-1	2	-3	
	2	4	10	

6. (10 points) Find the general solution of the system

$$\mathbf{X}' = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 5 & 3 \\ 0 & 3 & 5 \end{bmatrix} \mathbf{X}$$

7. (10 points) Find the solution of the initial value problem $% \left(\frac{1}{2} \right) = 0$

$$\mathbf{X}' = \begin{bmatrix} 4 & -7 \\ 7 & 4 \end{bmatrix} \mathbf{X}, \quad \mathbf{X}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

The coefficient matrix has a complex eigenvlaue of 4 + 7i and a corresponding complex eigenvector $\begin{bmatrix} i \\ 1 \end{bmatrix}$.

8. (10 points) Find the general solution of the system $% \left(10\right) =0$

$$\mathbf{X}' = \begin{bmatrix} -6 & 4\\ -1 & -2 \end{bmatrix} \mathbf{X}$$