Math 325: Differential Equations Name:
Exam II Oct. 31, 1996
Section:
There are 8 problems worth total of 85 points. You start with 15 points.

1. (10 points)
a) Use the Laplace transform to solve the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}+10 y=\delta(t), \quad y(0)=y^{\prime}(0)=0
$$

where $\delta(t)$ is the Dirac delta function.
b) Let $f(t)$ be an unspecified function that has a Laplace transform. Express the solution to the following initial value problem as an integral.

$$
y^{\prime \prime}-2 y^{\prime}+10 y=f(t), \quad y(0)=y^{\prime}(0)=0
$$

2. (15 points) Solve the following initial value problem using Laplace transforms.

$$
y^{\prime \prime}+3 y^{\prime}+2 y=g(t), \quad y(0)=0, y^{\prime}(0)=1
$$

where

$$
g(t)= \begin{cases}1 & 0 \leq t \leq 1 \\ 0 & t \geq 1\end{cases}
$$

3. (10 points) Let $\mathbf{X}^{(1)}(t)=\left[\begin{array}{c}t \\ t \\ t^{2}\end{array}\right], \mathbf{X}^{(2)}(t)=\left[\begin{array}{c}t^{2} \\ t \\ t\end{array}\right], \mathbf{X}^{(3)}(t)=\left[\begin{array}{c}t \\ t^{2} \\ t\end{array}\right]$,
a) Compute the Wronskian of $\mathbf{X}^{(1)}(t), \mathbf{X}^{(2)}(t), \mathbf{X}^{(3)}(t)$.
b) For what values of t are the vectors $\mathbf{X}^{(1)}(t), \mathbf{X}^{(2)}(t), \mathbf{X}^{(3)}(t)$ linearly dependent.
c) On what intervals are the vector functions $\mathbf{X}^{(1)}(t), \mathbf{X}^{(2)}(t), \mathbf{X}^{(3)}(t)$ linearly independent.
4. (10 points) Classify the following systems of first order equations using as many of the following terms as apply: linear, non-linear, homogeneous, non-homogeneous. (Do not try to solve the equations!)
a)

$$
\begin{aligned}
x_{1}^{\prime} & =t x_{1}+\left(t^{2}-e^{t}\right) x_{2} \\
x_{2}^{\prime} & =-\left(t^{3}-e^{-t}\right) x_{1}+\frac{1}{t} x_{2}
\end{aligned}
$$

b)

$$
\begin{aligned}
x_{1}^{\prime} & =\cos (t) x_{2}-\sin (t) \\
x_{2}^{\prime} & =\sin (t) x_{1}+\cos (t)
\end{aligned}
$$

c)

$$
\begin{aligned}
x_{1}^{\prime} & =1 / x_{2} \\
x_{2}^{\prime} & =1 / x_{1}
\end{aligned}
$$

5. (10 points) Find the eigenvalues and corresponding eigenvectors of the matrix

$$
\mathbf{A}=\left[\begin{array}{rrr}
4 & 0 & 0 \\
-1 & 2 & -3 \\
2 & 4 & 10
\end{array}\right]
$$

6. (10 points) Find the general solution of the system

$$
\mathbf{X}^{\prime}=\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 5 & 3 \\
0 & 3 & 5
\end{array}\right] \mathbf{X}
$$

7. (10 points) Find the solution of the initial value problem

$$
\mathbf{X}^{\prime}=\left[\begin{array}{rr}
4 & -7 \\
7 & 4
\end{array}\right] \mathbf{X}, \quad \mathbf{X}(0)=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

The coefficient matrix has a complex eigenvlaue of $4+7 i$ and a corresponding complex eigenvector $\left[\begin{array}{l}i \\ 1\end{array}\right]$.
8. (10 points) Find the general solution of the system

$$
\mathbf{X}^{\prime}=\left[\begin{array}{rr}
-6 & 4 \\
-1 & -2
\end{array}\right] \mathbf{X}
$$

