Math 325: Differential Equations

Name:
Quiz 4 Nov. 8, 1996

1. The solution to the initial value problem, $\mathbf{X}^{\prime}(t)=\mathbf{A} \cdot \mathbf{X}(t), \mathbf{X}(0)=\mathbf{X}^{(0)}$, is given by $\mathbf{X}(t)=\exp (\mathbf{A} t) \cdot \mathbf{X}^{(0)}$, where

$$
\exp (\mathbf{A} t)=\mathbf{I}+\mathbf{A} t+\mathbf{A}^{2} \frac{t^{2}}{2!}+\mathbf{A}^{3} \frac{t^{3}}{3!}+\ldots
$$

Let

$$
\mathbf{A}=\left[\begin{array}{ll}
3 & -4 \\
5 & -6
\end{array}\right]
$$

Calculate the matrix $\exp (\mathbf{A} t)$ another way using the eigenvalues and eigenvectors of A.
2. Suppose a fundamental solution for a homogeneous linear system $\mathbf{X}^{\prime}(t)=\mathbf{P}(t) \cdot \mathbf{X}(t)$ is

$$
\mathbf{X}(t)=c_{1}\left[\begin{array}{r}
2 \\
-1
\end{array}\right] t^{2}+c_{2}\left[\begin{array}{r}
-1 \\
1
\end{array}\right] t^{3}
$$

Use the method of variation of parameters to find a particular solution to the nonhomogeneous equation

$$
\mathbf{X}^{\prime}(t)=\mathbf{P}(t) \cdot \mathbf{X}(t)+\left[\begin{array}{r}
t \\
-t
\end{array}\right]
$$

