Math 325: Differential Equations
Exam III November 25, 1997
0.5 trueinRecord your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 10 multiple choice questions worth 5 points each and three partial credit problems worth 10 points each. You start with 20 points.

Find a fundamental matrix for the system $\mathbf{X}^{\prime}=\left[\begin{array}{cc}9 & -8 \\ 12 & -11\end{array}\right] \cdot \mathbf{X}\left[\begin{array}{ll}2 e^{-3 t} & e^{t} \\ 3 e^{-3 t} & e^{t}\end{array}\right]\left[\begin{array}{ll}e^{-3 t} & e^{t} \\ e^{-3 t} & e^{t}\end{array}\right]$ $\left[\begin{array}{cc}3 e^{-3 t} & 2 e^{t} \\ e^{-3 t} & -e^{t}\end{array}\right]\left[\begin{array}{cc}2 e^{t} & e^{-3 t} \\ e^{t} & 3 e^{-3 t}\end{array}\right]\left[\begin{array}{cc}-e^{t} & e^{-3 t} \\ e^{t} & e^{-3 t}\end{array}\right]$

Suppose

$$
\Psi(t)=\left[\begin{array}{cc}
2 \cos (t)-\sin (t) & \cos (t)+2 \sin (t) \\
\cos (t) & \sin (t)
\end{array}\right]
$$

is a fundamental matrix for a system of linear first order equations. Determine the unique solution through the point $(1,2) .(\cos (t)-8 \sin (t), 2 \cos (t)-3 \sin (t))(\cos (t), 2 \cos (t))$ $(\cos (t)-4 \sin (t), 2 \cos (t)+2 \sin (t))(\cos (t)+3 \sin (t), 2 \cos (t)+8 \sin (t))(\cos (t)+2 \sin (t), 2 \cos (t)-\square$ $4 \sin (t))$

Let $\Psi(t)$ be a fundamental matrix for a homogeneous linear system $\mathbf{X}^{\prime}=\mathbf{P}(t) \cdot \mathbf{X}$. A solution to the non-homogeneous system $\mathbf{X}^{\prime}=\mathbf{P}(t) \cdot \mathbf{X}+\mathbf{G}(t)$ can be written in the form $\mathbf{Y}(t)=\Psi(t) \cdot \mathbf{U}(t)$ where $\mathbf{U}(t)$ satisfies: $\mathbf{U}^{\prime}(t)=\Psi(t)^{-1} \cdot \mathbf{G}(t) \mathbf{U}^{\prime}(t)=\Psi(t) \cdot \mathbf{G}(t)$ $\mathbf{U}^{\prime}(t)=\Psi(t) \cdot \Psi(0)^{-1} \cdot \mathbf{G}(t) \mathbf{U}^{\prime}(t)=\int \Psi(t) \cdot \Psi(0)^{-1} \cdot \mathbf{G}(t) \mathbf{U}^{\prime}(t)=\int \Psi(t)^{-1} \cdot \mathbf{G}(t)$

Let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Which of the following matrices equals $\exp (A t) .\left[\begin{array}{ll}\cosh (t) & \sinh (t) \\ \sinh (t) & \cosh (t)\end{array}\right]$ $\left[\begin{array}{cc}\cos (t) & -\sin (t) \\ -\sin (t) & \cos (t)\end{array}\right]\left[\begin{array}{cc}e^{t} & e^{-t} \\ e^{t} & -e^{-t}\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}-e^{t} & e^{-t} \\ e^{t} & e^{-t}\end{array}\right]\left[\begin{array}{cc}e^{t} & 0 \\ 0 & e^{-t}\end{array}\right]$

Determine the type and stability of the critical point $(0,0)$ for the system

$$
\begin{aligned}
& \frac{d x}{d t}=2 x+2 y \\
& \frac{d y}{d t}=2 x-2 y
\end{aligned}
$$

saddle unstable node unstable spiral stable spiral stable node
Consider the non-linear system

$$
\begin{aligned}
& \frac{d x}{d t}=\cos (x)-y^{2} \\
& \frac{d y}{d t}=e^{x y}-1
\end{aligned}
$$

Find the coefficient matrix for the corresponding linear system at the critical point $(0,1) \cdot\left[\begin{array}{cc}0 & -2 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}-1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}-2 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}-3 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]$

Determine the critical points of the system

$$
\begin{aligned}
& \frac{d x}{d t}=x-x^{2}-x y \\
& \frac{d y}{d t}=2 y-y^{2}-3 x y
\end{aligned}
$$

$(0,0),(0,2),(1,0),(1 / 2,1 / 2)(0,0),(0,2),(1,0),(1,1)(0,0),(0,1),(2,0),(2,2)(0,0)$, $(0,1 / 2),(1,0),(1 / 2,1 / 2)(0,0),(2,0),(0,1),(1,1)$

Determine the type and stability of the critical point $(0,0)$ for the system

$$
\begin{aligned}
& \frac{d x}{d t}=2 x+4 y^{2} \\
& \frac{d y}{d t}=x+2 y
\end{aligned}
$$

unstable node or spiral asymptotically stable node center, stability indeterminate unstable saddle unstable spiral

Identify which type of system most closely matches the following phase portrait.
predator-prey system undamped pendulum damped pendulum competing species with stable coexistence competing species with extinction of one species

The following system models populations of competing species.

$$
\begin{aligned}
& \frac{d x}{d t}=x(2-2 x-y) \\
& \frac{d y}{d t}=y(4-2 x-3 y)
\end{aligned}
$$

Deteremine the limiting populations $x(t), y(t)$, as $t \rightarrow \infty$, if the starting populations are $x(0)=3$ and $y(0)=4 . x(t) \rightarrow 1 / 2, y(t) \rightarrow 1 x(t) \rightarrow 1, y(t) \rightarrow 0 x(t) \rightarrow 0, y(t) \rightarrow 4 / 3$ $x(t) \rightarrow 0, y(t) \rightarrow 0 x(t) \rightarrow 3 / 2, y(t) \rightarrow 2$
11. Find the general solution of the following system using the method of variation of parameters.

$$
\begin{aligned}
& \frac{d x}{d t}=-10 x+3 y-3 e^{-t} \\
& \frac{d y}{d t}=-36 x+11 y-6 e^{-t}
\end{aligned}
$$

12. Determine all the real critical points of the following system and discuss the type and stability of each.

$$
\begin{aligned}
& \frac{d x}{d t}=1-x y \\
& \frac{d y}{d t}=x-y^{3}
\end{aligned}
$$

13. Consider the following system that models two interacting species with populations x and y.

$$
\begin{aligned}
& \frac{d x}{d t}=x\left(1-\frac{1}{2} y\right) \\
& \frac{d y}{d t}=y\left(-\frac{1}{3}+\frac{2}{3} x\right)
\end{aligned}
$$

(a) Find the critical points of this system and describe their stability properties.
(b) Sketch a phase portrait for this system.

