
Math 325: Differential Equations Name:

Exam II October 27, 1998 Section:

Record your answers to the multiple choice problems by placing an × through one letter
for each problem on this answer sheet. There are 8 multiple choice questions worth 9
points each and two partial credit problems worth 14 points each.

Given x1 = (1,−1). Which x2 below will make x1,x2 linearly independent. x2 = (2, 1)
x2 = (−1, 1) x2 = (2,−2) x2 = (0, 0) x2 = (−4, 4)

Compute the eigenvalues of the matrix 1 0 0
1 3 −1
−1 2 −1
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Under the change of variables x1 = y, x2 = y′ and x3 = y′′, which of the fol-
lowing systems corresponds to the equation y′′′ + 4y′′ + 5y′ + 6y = 7 sin t + 8 cos 2t? x′1 = x2

x′2 = x3

x′3 = −4x3 − 5x2 − 6x1 + 7 sin t + 8 cos 2t x′1 = x2

x′2 = x3

x′3 = −4x1 − 5x2 − 6x3 + 7 sin t + 8 cos 2t x′1 = x2

x′2 = x3

x′3 = 4x1 + 5x2 + 6x3 + 7 sin t + 8 cos 2t x′1 = x2

x′2 = x3

x′3 = 4x1 + 5x2 + 6x3 − 7 sin t− 8 cos 2t x′1 = x2

x′2 = x3

x′3 = 4x3 + 5x2 + 6x1 + 7 sin t + 8 cos 2t
Find all linearly independent eigenvector(s) corresponding to the eigenvalue r = 1(
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Given that A is a real 2x2 matrix. −1, 2 are the eigenvalues and
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are the corresponding eigenvectors. Then the general solution for x′ = A · x is given by
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Given that A is a real 2x2 matrix. 2− i is an eigenvalue and
(
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is an eigenvector.

Determine which of the following is a general solution to the first order ODE system x′ = A·
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Given that A is a real 3x3 matrix. −4 is an double eigenvalue and
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corresponding eigenvectors. A third eigenvalue is 5 and the corresponding eigenvector is 0
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 Then the general solution for x′ = A · x is given by c1e
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 The general solution does not

exist.

Determine which of the following statements is NOT true. If A is an 3 by 3 real
matrix, then all the eigenvalues are real.

If A is an 3 by 3 real and symmetric matrix, then there always exist 3 linearly
independent eigenvectors, even if some of the eigenvalues are repeated.

Let A be an 3 by 3 real matrix. If detA = 0, then the column vectors of A are linearly
dependent.

Let x(1)(t) and x(2)(t) be two solutions of x′ = Ax, where A is a 2x2 matrix. If
x(1)(t), x(2)(t) are linearly independent at t = 0, then they are also linearly independent
at t = 1.

If ξ is an eigenvector corresponding to a repeated eigenvalue r = ρ, then eρtξ is a
solution to the system x′ = Ax.

(a). Find the general solution of the homogeneous system
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(b). Find a particular solution of the non-homogeneous system
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Consider the system {

x′1 = −5x1 + 3x2

x′2 = −3x1 + x2

(a). Find the eigenvalues and eigenvectors.

(b). Find the general solution.

3


