Name:	Instructor:
Fall Se Fin	nematics 325 emester 2000 nal Exam. nber 13, 2000
1. This Examination contains 21 prowill be exactly 120 minutes in length.	oblems worth a total of 150 points. The test
2. For each multiple choice question, the answer sheet. Do not circle it.	please mark an X on the correct answer on
3. Calculators, books and notes are n	ot allowed.
4. A table of Laplace transforms is in	cluded at the end of the booklet.
5. Hand in the entire test.	
Sign the pledge: "On my honor, laid on this Exam":	I have neither given nor received unauthorized

HAVE A NICE VACATION

- 1. The Wronskian of $\{1, e^{2x}, e^{-2x}\}$ is
 - (a) 16
 - (b) 2
 - (c) e^{2x}
 - (d) e^{4x}
 - (e) 1
- 2. The general solution of the equation

$$y^{(3)} + 3y'' + 2y' = 0$$

is

- (a) $c_1 + c_2 e^{-t} + c_3 e^{-2t}$
- (b) $c_1e^{3t} + c_2e^{2t} + c_3e^t$
- (c) $c_1 + c_2 e^t + c_3 e^{2t}$
- (d) $c_1 e^{-t} + c_2 e^{-2t} + c_3 e^{-3t}$
- (e) $c_1 + c_2 t + c_3 t^2$
- 3. Determine a suitable form for a particular solution of the equation

$$y''' - 9y' = t + e^{3t}.$$

- (a) $t(A_0t + A_1) + Bte^{3t}$
- (b) $A_0t + A_1 + Be^{3t}$
- (c) $t(A_0t + A_1) + Be^{3t}$
- (d) $t(A_0t + A_1) + B$
- (e) $A_0 t + B t e^{3t}$
- 4. Given that $y_1(t) = 1$, $y_2(t) = t$ and $y_3(t) = e^t$ form a fundamental set of solutions of the equation y''' - y'' = 0, determine a particular solution of

$$y''' - y'' = g(t)$$

in terms of an integral.

- terms of an integral.

 (a) $\int_{t_0}^t (s-1)g(s)ds t \int_{t_0}^t g(s)ds + e^t \int_{t_0}^t e^{-s}g(s)ds$ (b) $\int_{t_0}^t e^s(s-1)g(s)ds t \int_{t_0}^t e^sg(s)ds + e^t \int_{t_0}^t g(s)ds$ (c) $\int_{t_0}^t e^s(s-1)g(s)ds \int_{t_0}^t e^sg(s)ds + \int_{t_0}^t g(s)ds$ (d) $\int_{t_0}^t (s-1)g(s)ds \int_{t_0}^t g(s)ds + \int_{t_0}^t e^{-s}g(s)ds$ (e) $\int_{t_0}^t sg(s)ds t \int_{t_0}^t e^sg(s)ds + e^t \int_{t_0}^t e^{-s}g(s)ds$

5. Let

$$f(t) = \begin{cases} 100, & 0 < t \le 99 \\ 0, & t > 99. \end{cases}$$

Find the Laplace transform of f.

(a)
$$\frac{100}{s}(1-e^{-99s})$$

(b)
$$\frac{99}{s}(1 - e^{-100s})$$

(c)
$$100(1 - e^{-99s})$$

(d)
$$99(1 - e^{-100s})$$

(e)
$$\frac{100}{s}(1-e^{99s})$$

6. The inverse Laplace transform of

$$\frac{2s+5}{s^2+5s+6}$$

is

(a)
$$e^{-2t} + e^{-3t}$$

(b)
$$e^{2t} + e^{3t}$$

(c)
$$\sin 2t + \sin 3t$$

(d)
$$e^{2t}\cos 2t + e^{3t}\sin 3t$$

(e)
$$e^{3t} \cos 2t$$

7. The solution of the initial value problem

$$y'' + 4y = \delta(t - \frac{\pi}{4}), \quad y(0) = y'(0) = 0$$

is

(a)
$$\frac{1}{2}\sin 2(t-\frac{\pi}{4})$$

(b)
$$\frac{1}{2}\cos 2(t - \frac{\pi}{4})$$

(c)
$$\delta(t - \frac{\pi}{4}) \sin 2(t - \frac{\pi}{4})$$

(d)
$$\frac{1}{2}u_{\frac{\pi}{4}}(t)\sin 2(t-\frac{\pi}{4})$$

(e)
$$\frac{1}{2}u_{\frac{\pi}{4}}(t)\cos 2(t-\frac{\pi}{4})$$

8. Find the general solution of the system of equations

$$\frac{d\mathbf{x}}{dt} = \begin{pmatrix} 2 & 0 & 0\\ 0 & 1 & 1\\ 0 & 0 & 1 \end{pmatrix} \mathbf{x}$$

(a)
$$c_1 e^{2t} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2 e^t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c_3 \left(t e^t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + e^t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right)$$

(b)
$$c_1 e^{2t} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2 e^t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c_3 e^t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

(c)
$$c_1 e^{2t} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2 e^t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c_3 t e^t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

(d)
$$c_1 e^{2t} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2 e^t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c_3 \left(t e^t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + e^t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right)$$

(e)
$$c_1 e^{2t} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2 e^t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c_3 e^t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

9. Let us consider the first order system

$$\frac{d\mathbf{x}}{dt} = A\mathbf{x} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \mathbf{x}.$$

Suppose that the matrix A has a complex eigenvalue r = 1 + i and $\begin{pmatrix} 1 \\ -i \end{pmatrix}$ is the corresponding eigenvector. Determine which of the following is the general solution.

(a)
$$c_1 e^t (\cos t \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \sin t \begin{pmatrix} 0 \\ -1 \end{pmatrix}) + c_2 e^t (\sin t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \cos t \begin{pmatrix} 0 \\ -1 \end{pmatrix})$$

(b)
$$c_1 e^t (\cos t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \sin t \begin{pmatrix} 0 \\ -1 \end{pmatrix}) + c_2 e^t (\sin t \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \cos t \begin{pmatrix} 0 \\ -1 \end{pmatrix})$$

(c)
$$c_1 e^t (\sin t \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \cos t \begin{pmatrix} 0 \\ -1 \end{pmatrix}) + c_2 e^t (\sin t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \cos t \begin{pmatrix} 0 \\ -1 \end{pmatrix})$$

(d)
$$c_1 e^t \cos t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 e^t \sin t \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

(e)
$$c_1 e^t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

10. Find the fundamental matrix $\Phi(t)$ satisfying $\Phi(0) = I$ for the linear system

$$\frac{d\mathbf{x}}{dt} = \begin{pmatrix} 0 & 2\\ 2 & 0 \end{pmatrix} \mathbf{x}.$$

(a)
$$\frac{1}{2} \begin{pmatrix} e^{2t} + e^{-2t}, & e^{2t} - e^{-2t} \\ e^{2t} - e^{-2t}, & e^{2t} + e^{-2t} \end{pmatrix}$$

(b)
$$\begin{pmatrix} e^{2t}, & e^{-2t} \\ e^{2t}, & -e^{-2t} \end{pmatrix}$$

(c)
$$\begin{pmatrix} e^{-2t}, & e^{2t} \\ e^{-2t}, & -e^{2t} \end{pmatrix}$$

(d)
$$\frac{1}{2} \begin{pmatrix} e^{2t} + e^{-2t}, & -e^{2t} + e^{-2t} \\ e^{2t} - e^{-2t}, & e^{2t} + e^{-2t} \end{pmatrix}$$

(e)
$$\frac{1}{2} \begin{pmatrix} e^{2t} + e^{-2t}, & e^{2t} - e^{-2t} \\ -e^{2t} + e^{-2t}, & e^{2t} + e^{-2t} \end{pmatrix}$$

11. Given that a fundamental matrix for the linear system

$$\frac{d\mathbf{x}}{dt} = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} \mathbf{x}$$

is

$$\Psi(t) = \begin{pmatrix} e^{-3t} & e^{-t} \\ -e^{-3t} & e^{-t} \end{pmatrix},$$

find the general solution of

$$\frac{d\mathbf{x}}{dt} = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} \tan t\\ e^{-t} \end{pmatrix}$$

is

(a)
$$c_1 e^{-3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} e^{-3t} & e^{-t} \\ -e^{-3t} & e^{-t} \end{pmatrix} \int \begin{pmatrix} e^{3t} & -e^{3t} \\ e^t & e^t \end{pmatrix} \begin{pmatrix} \tan t \\ e^{-t} \end{pmatrix} dt.$$

(b)
$$c_1 e^{-3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \int \begin{pmatrix} \tan x \\ e^{-t} \end{pmatrix} dt$$
.

(c)
$$c_1 e^{-3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} e^{-3t} & e^{-t} \\ -e^{-3t} & e^{-t} \end{pmatrix} \int \begin{pmatrix} e^t & -e^{3t} \\ e^t & e^{3t} \end{pmatrix} \begin{pmatrix} \tan t \\ e^{-t} \end{pmatrix} dt.$$

(d)
$$c_1 e^{-3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} e^{3t} & -e^{3t} \\ -e^{-3t} & e^{-t} \end{pmatrix} \int \begin{pmatrix} e^{-3t} & e^{-t} \\ -e^{-3t} & e^{-t} \end{pmatrix} \begin{pmatrix} \tan t \\ e^{-t} \end{pmatrix} dt.$$

(e)
$$c_1 e^{-3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} e^{3t} & -e^{3t} \\ -e^{-3t} & e^{-t} \end{pmatrix} \int \begin{pmatrix} e^{-3t} & e^{-t} \\ -e^{-3t} & e^{-t} \end{pmatrix} dt$$
.

12. Consider the almost linear system

$$\frac{dx}{dt} = x - 2y + 3y^2$$

$$\frac{dy}{dt} = y - 2xy + 3x^2.$$

The critical point (0,0) is

- (a) unstable and its type for the non-linear system cannot be determined from the corresponding linear system.
- (b) an unstable improper node for both non-linear system and the corresponding linear system.
- (c) unstable for the corresponding linear system and stable for the non-linear system.
- (d) The stability for the non-linear system cannot be determined from the corresponding linear system.
- (e) an unstable improper node for the corresponding linear system but an unstable node for the non-linear system.

13. For the almost linear system

$$\frac{dx}{dt} = 2y - xy - y^2$$

$$\frac{dy}{dt} = -x + 3x^2 - 2xy,$$

- (a) (1,1) is an asymptotically stable spiral point.
- (b) (1,1) is either a spiral point or a center. Its stability can not be determined from the corresponding linear system.
 - (c) (1,1) is an unstable saddle point.
 - (d) (1, 1) is an asymptotically stable node.
- (e) The type of the critical point (1,1) cannot be determined from the corresponding linear system.

14. The system

$$\frac{dx}{dt} = -x^3 + xy^2$$
$$\frac{dy}{dt} = -3xy^2$$

has (0,0) as a critical point. Using $V(x,y)=3x^2+y^2$ as a Liapunov function to test the stability of (0,0), what conclusion can we get?

- (a) (0,0) is a stable critical point.
- (b) (0,0) is a saddle point.
- (c) (0,0) is an unstable critical point.
- (d) No conclusion can be drawn by using this Liapunov function. We should use another Liapunov function to test the stability of (0,0).
 - (e) The stability of (0,0) cannot be determined by Liapunov's method.

15. Suppose $y' = (y+t)^2$, y(2) = 1. Approximate y(2.2) using Euler's Method, with h = 0.1.

- (a) 3.5
- (b) 3.2
- (c) 3.3
- (d) 3.4
- (e) 3.6

16. If $u_{xx}(x,t) = 2u_{xt}(x,t)$, where u(x,t) = X(x)T(t), which pair of equations is satisfied separately by X(x) and T(t)?

- (a) $X'' + \lambda X' = 0$, $2T' + \lambda T = 0$
- (b) $X'' + \lambda X = 0$, $T'' + 2\lambda T = 0$
- (c) $X' + \lambda X = 0, T' + \lambda T = 0$
- (d) $X'' + \lambda X' + X = 0, T = 2\lambda$
- (e) there is no solution of form u(x,t) = X(x)T(t)

17. Suppose that

$$f(x) = \begin{cases} 0, & -2 \le x < 0 \\ 1, & 0 \le x < 2. \end{cases}$$

and f(x+4) = f(x). If $a_0 + \sum_{n=1}^{\infty} (a_n \cos(\frac{n\pi}{2}x) + b_n \sin(\frac{n\pi}{2}x))$ is the Fourier series for f(x), what is b_3 ? (a) $\frac{2}{3\pi}$ (b) $\frac{3\pi}{2}$ (c) $\frac{1}{6\pi}$ (d) 0

- (e) $\frac{3\pi}{4}$

18. Which is the value does the Fourier series from Problem 4 at x=2?

- (a) $\frac{1}{2}$
- (b) 1
- (c) 0
- (d) $\frac{1}{4}$
- (e) the series does not converge at x=2

19. If f(x) = x, $0 \le x < 2$, and f(x+4) = f(x), what is the value of the even extension of f(x) at x = 3?

- (a) 1
- (b) 0
- (c) 2
- (d) 3
- (e) -1

20. A bar of metal is located on the x-axis between x = 0 and x = 2. The bar is insulated, and both ends are maintained at temperature 0. At time 0, the temperature at position x is given by $f(x) = \sin(\frac{\pi}{2}x) + 2\sin(\pi x)$, for 0 < x < 2. Assume $\alpha = 2$, so that $u_{xx}(x,t) = 4u_t(x,t)$. Find the temperature u(x,t) for 0 < x < 2 and t > 0.

- (a) $\sin(\frac{\pi}{2}x)e^{-\pi^2t} + 2\sin(\pi x)e^{-4\pi^2t}$
- (b) $\sin(\frac{\pi}{2}x)\cos(\pi t) + 2\sin(\pi x)\cos(2\pi t)$
- (c) $\sin(\frac{\pi}{\pi}x)\cos(\frac{1}{\pi}t) + 2\sin(\frac{1}{\pi}x)\cos(\frac{1}{2\pi}t)$ (d) $\sin(\frac{2}{\pi}x)e^{-\pi t} + 2\sin(\frac{1}{\pi}x)e^{-2\pi t}$
- (e) u(x,t) = 0

21. Suppose f(x) is piecewise continuous on the interval [0,3], with Fourier sine series $\sum_{n=1}^{\infty} \frac{1}{n^2} \sin(\frac{n\pi}{3}x)$. Find the solution for the wave equation $u_{xx}(x,t) = u_{tt}$, boundary conditions u(0,t) = 0, u(3,0) = 0, for $t \geq 0$, and initial conditions boundary conditions u(0,t) = 0, u(0,0) = 0, $u_t(x,0) = 0$ and u(x,0) = f(x).

(a) $u(x,t) = \sum_{n=1}^{\infty} \frac{1}{n^2} \sin(\frac{n\pi}{3}x) \cos(\frac{n\pi}{3}t)$ (b) $u(x,t) = \frac{2\pi}{3} \sum_{n=1}^{\infty} \frac{1}{n^2} (\sin(n\pi x) \cos(\frac{n\pi}{3}t))$ (c) $u(x,t) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin(\frac{n^2\pi^2}{9}x) \cos(\frac{n^2\pi^2}{9}t)$ (d) $u(x,t) = \frac{9}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin(\frac{n\pi}{3}x) e^{-\frac{n^2\pi^2}{9}t}$ (e) u(x,t) = 0