Mathematics 325
 Fall Semester 1999
 Test 2
 October 12, 2000

1. This Examination contains twelve problems worth a total of 100 points. (There are 9 problems in Part A worth a total of 45 points. There are 3 problems in Part B worth a total of 45 points as well. You begin with 10 points). The test will be exactly 75 minutes in length.
2. For each multiple choice question, please mark an X on the correct answer on the answer sheet. Do not circle it.
3. On problem 10,11 and 12 , show your work, indicating clearly in the space provided how you arrive at your answer; otherwise no credit will be given.
4. Calculators, books and notes are not allowed.
5. A table of Laplace transforms is supplied at the end of the booklet.
6. Hand in the entire test.

Sign the pledge: "On my honor, I have neither given nor received unauthorized aid on this Exam":

GOOD LUCK

1. Find the Laplace transform of $f(t)=\delta(t-\pi) \cos t$.
(a) $-e^{\pi s}$
(b) $-e^{-\pi s}$
(c) -1
(d) $e^{-\pi s}$
(e) $e^{-\pi s} \cos s$.
2. Let $F(s)=\frac{1}{s^{3}\left(s^{2}+4\right)}$ Find the inverse Laplace transform of F.
$\begin{array}{lll}\text { (a) } t^{2} \sin 2 t & \text { (b) } \frac{1}{2} t^{2} \sin 2 t & \text { (c) } \frac{1}{4} t^{2} \sin 2 t\end{array}$
(d) $\frac{1}{2} \int_{0}^{t}(t-\tau)^{2} \sin 2 \tau d \tau \quad$ (e) $\frac{1}{4} \int_{0}^{t}(t-\tau)^{2} \sin 2 \tau d \tau$
3. Find the inverse of the matrix $\left(\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right)$
(a) $\left(\begin{array}{ll}-1 & 3 \\ 2 & -4\end{array}\right)$
(b) $\left(\begin{array}{ll}\frac{3}{2} & -2 \\ -\frac{1}{2} & 1\end{array}\right)$
(c) $\left(\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right)$
(d) $\left(\begin{array}{ll}2 & 1 \\ \frac{3}{2} & \frac{1}{2}\end{array}\right)$ (e) $\left(\begin{array}{ll}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right)$
4. Which of the following statements is incorrect?

$$
x_{1}+x_{3}=0
$$

(a) The system $x_{1}+x_{2}=0$ has only the trivial solution.

$$
x_{2}+x_{3}=0
$$

(b) The vectors $\mathbf{x}^{(1)}(t)=\binom{t^{2}}{t}$ and $\mathbf{x}^{(2)}(t)=\binom{t}{1}$ are linearly dependent on $0<t<1$.
(c) The vectors $\mathbf{x}^{(1)}=\binom{1}{2}$ and $\mathbf{x}^{(2)}=\binom{2}{0}$ are linearly independent.
(d) The vectors $\mathbf{x}^{(1)}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), \mathbf{x}^{(2)}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right), \mathbf{x}^{(3)}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ are linearly independent.
(e) The two vectors $\mathbf{x}^{(1)}(t)=\binom{\sin t}{\cos t}$ and $\mathbf{x}^{(2)}(t)=\binom{-\cos t}{\sin t}$ are linearly independent on $-\infty<t<\infty$.
5. Using elementary row operations, find the number k such that the system $x_{1}-2 x_{2}+x_{3}=k$ $x_{1}-x_{2}+2 x_{3}=1$ has a solution. $2 x_{1}-3 x_{2}+3 x_{3}=0$
(a) $k=0$
(b) $k=2$
(c) $k=1$
(d) $k=3$
(e) $k=-1$
6. Suppose that $\mathbf{x}^{(1)}=\binom{4}{2}$. Which $\mathbf{x}^{(2)}$ below will make $\left.\mathbf{x}^{(1)}, \mathbf{x}^{(2)}\right\}$ linearly independent?
(a) $\mathbf{x}^{(2)}=\binom{-2}{-1}$
(b) $\mathbf{x}^{(2)}=\binom{2}{1}$
(c) $\mathbf{x}^{(2)}=\binom{0}{0}$
(d) $\mathbf{x}^{(2)}=\binom{6}{-4}$
$(\mathrm{e}) \mathbf{x}^{(2)}=\binom{8}{4}$
7. Compute the eigenvalues of the matrix $\left(\begin{array}{ccc}4 & 100 & 99 \\ 0 & 3 & 2 \\ 0 & 2 & 3\end{array}\right)$.
(a) $100,99,4$
(b) $4,5,1$
(c) $4,3,2$
(d) $3+2 i, 3-2 i, 4$
(e) $3,2,3 i$
8. Suppose A is a 2×2 real matrix with a complex eigenvalue $r=3+2 i$, and $\binom{1}{2+i}$ is the corresponding eigenvector. Which of the following is the general solution to the first order system $\mathbf{x}^{\prime}=A \mathbf{x}$?
(a) $c_{1} e^{3 t}\binom{2 \cos 2 t-\sin 2 t}{\cos 2 t}+c_{2} e^{3 t}\binom{2 \sin 2 t+\cos 2 t}{\sin 2 t}$
(b) $c_{1} e^{2 t}\binom{\cos 3 t}{2 \cos 3 t-\sin 3 t}+c_{2} e^{2 t}\binom{\sin 3 t}{2 \sin 3 t+\cos 3 t}$
(c) $c_{1} e^{3 t}\binom{\cos 2 t}{2 \cos 2 t-\sin 2 t}+c_{2} e^{3 t}\binom{\sin 2 t}{2 \sin 2 t+\cos 2 t}$
(d) $c_{1} e^{-3 t}\binom{\cos 2 t}{2 \cos 2 t-\sin 2 t}+c_{2} e^{-3 t}\binom{\sin 2 t}{2 \sin 2 t+\cos 2 t}$
(e) $c_{1} e^{-2 t}\binom{\cos 3 t}{2 \cos 3 t-\sin 3 t}+c_{2} e^{-2 t}\binom{\sin 3 t}{2 \sin 3 t+\cos 3 t}$
9. Suppose A is a 3×3 matrix with a repeated eigenvalue $r_{1}=r_{2}=5$, and $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ are the corresponding eigenvectors. Then which of the following are solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$?
(a) $c_{1} e^{5 t}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+c_{2} e^{5 t}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$, for all numbers c_{1} and c_{2}
(b) $c_{1} e^{5 t}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+c_{2} t e^{5 t}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$, for all numbers c_{1} and c_{2}
(c) $c_{1} e^{5 t}\left[t\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right]+c_{2} e^{5 t}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$, for all numbers c_{1} and c_{2}
(d) $c_{1} e^{5 t}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+c_{2} e^{5 t}\left[t\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)+\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right]$, for all numbers c_{1} and c_{2}
(e) $c_{1} e^{5 t}\left[t\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)+\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right]+c_{2} e^{5 t}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$, for all numbers c_{1} and c_{2}
10. Find the solution of the initial value problem
$y^{\prime \prime}+4 y^{\prime}+5 y=\delta(t-1), y(0)=0, y^{\prime}(0)=1$.
11. (a) Find the general solution of $\mathbf{x}^{\prime}=\left(\begin{array}{rr}2 & 1 \\ -2 & 5\end{array}\right) \mathbf{x}$.
(b) Find the solution that satisfies the initial condition $\mathbf{x}(0)=\binom{2}{3}$.
12. Find the general solution of $\mathbf{x}^{\prime}=\left(\begin{array}{ll}4 & 0 \\ 1 & 4\end{array}\right) \mathbf{x}$.

