tion:	
Mathematics 325	
Fall Semester 2002	
Final Exam.	
${\color{red} \textbf{December 20, 2002}}$	
	÷
1. This Examination contains 25 problems worth a total of 150 points. The test will be exactly 120 minutes in length. 2. For each multiple choice question, please mark an X on the correct answer	
on the answer sheet. Do not circle it. 3. Calculators, books and notes are not allowed. 4. A	
table of Laplace transforms and a table giving type and stability properties in terms of eigenvalues are included at the end of the booklet. 5. Hand in the entire test.	
Sign the pledge: "On my honor, I have neither given nor received unauthorized aid on this Exam": HAVE A NICE VACA	

- 1. The Wronskian of $\{1,\cos t,\sin t\}$ is (a). $\cos t$ (b). $\sin t$ (c). 1 (d). -1 (e). $\sin^2 t \cos^2 t$
- 2. Determine a suitable form for a particular solution of the equation

$$y'''' - 3y'' - 4y = \cos 2t.$$

- (a). $A \sin 2t$ (b). $A \cos 2t + B \sin 2t$ (c). $B \cos 2t$ (d). $(At + B) \cos 2t$ (e). $At \cos 2t + Bt \sin 2t$
- 3. Find the general solution of the equation

$$y''' + y'' - y' - y = 0.$$

(a).
$$C_1e^t + C_2e^{-t} + C_3te^{-t}$$
 (b). $C_1e^t + C_2e^{-t} + C_3e^{-t}$ (c). $C_1e^t + C_2te^t + C_3e^{-t}$ (d). $C_1e^{-t} + C_3e^{-t}$

$$C_2 t e^{-t} + C_3 t^2 e^{-t}$$
 (e). $C_1 e^t + C_2 e^{-t}$

4. Let $X_1(t) = 3 + t$, $X_2(t) = -t + 2t^2$, $X_3(t) = 2 - t^2$, $X_4(t) = 3 - t + 4t^2$. Which of the following is false? (a). X_1, X_2, X_4 are linearly independent (b). X_1, X_2, X_3 are linearly independent (c).

 X_1, X_2 are linearly independent (d). X_1, X_3 are linearly independent (e). X_2, X_3, X_4 are linearly independent

5. Let

$$f(t) = \int_0^t (t - \tau)^3 e^{2\tau} d\tau.$$

Find the Laplace transform of f. (a). $\frac{6}{s^4(s+2)}$ (b). $\frac{6}{s^4(s-2)}$ (c). s^3e^{-2s} (d). $\frac{3}{s^4(s+2)}$ (a). $\frac{6}{(s+2)^4}$

6. The Laplace transform of

$$f(t) = t^2 \delta(t - 3)$$

is (a). $\frac{2}{s^3}$ (b). $9e^{-3s}$ (c). e^{-3s} (d) $\frac{2}{(s-3)^3}$ (e). $3e^{-9s}$.

7. Solve the initial value problem

$$y'' = u_1(t), \ y(0) = 1, y'(0) = 0.$$

(a).
$$y = 1 + 2u_1(t)t^2$$
 (b). $y = 1 + u_1(t)(t-1)^2$ (c). $y = 1 + \frac{1}{2}u_1(t)t^2$ (d). $y = 1 + \frac{1}{2}u_1(t)(t-1)^2$ (e).

$$y = \frac{1}{2}(1 + u_1(t)t^2)$$

8. Solve the initial value problem

$$y'' - 4y = 8\delta(t - 1), \quad y(0) = y'(0) = 0.$$

(a).
$$y = 2(e^{2t} + e^{-2t})$$
 (b). $y = 2u_1(t)(e^{2t} + e^{-2t})$ (c). $y = 2u_1(t)(e^{2t} - e^{-2t})$ (d). $y = 2u_1(t)(e^{2(t-1)} + e^{-2(t-1)})$ (e). $y = 2u_1(t)(e^{2(t-1)} - e^{-2(t-1)})$

9. Consider the initial value problem

$$y' = 5y, \ y(0) = 1.$$

Using step size $h=\frac{1}{10}$ and two steps of the (forward) Euler method, what is the error at $t=\frac{1}{5}$ compared to the actual solution to the equation? (a). $|1-\frac{9}{4}|$ (b). $|e-\frac{9}{4}|$ (c). $|1-\frac{3}{2}|$ (d). $|e-\frac{3}{2}|$

(e).
$$|1 - e|$$

10. Find the general solution of

$$\frac{d\mathbb{X}}{dt} = (153 - 1)\,\mathbb{X}.$$

(a).
$$C_1 e^{4t} (53) + C_2 e^{-4t} (1-1)$$
.

(b).
$$C_1 e^{4t} (53) + C_2 e^{4t} (1-1)$$
.

(c).
$$C_1 e^{4t} (53) + C_2 e^{-4t} (0-1)$$
.

(d).
$$C_1 e^{4t} (35) + C_2 e^{-4t} (11)$$
.

(e).
$$e^{4t} (1-1)$$
.

11. The trajectory corresponding to the solution of

$$\frac{dx}{dt} = 4y$$
, $x(0) = 1$, $\frac{dy}{dt} = -x$, $y(0) = 0$

is (a). $x^2 + 4y^2 = 1$, traveling clockwise. (b). $4x^2 + y^2 = 1$, traveling clockwise. (c). $x^2 + 4y^2 = 1$, traveling counterclockwise. (d). $4x^2 + y^2 = 1$, traveling counterclockwise. (e). $x^2 + 4y^2 = 4$, traveling counterclockwise.

12. The matrix (1221) has eigenvalues 3 and -1 and eigenvectors (11) and (1 - 1) respectively. Find the general solution to $\frac{d\mathbb{X}}{dt} = (1221)\mathbb{X} + (0e^t)$.

(a).
$$C_1 e^t (10) + C_2 e^{-t} (01) + e^{3t} (11)$$
.

(b).
$$C_1 e^{3t} (11) + C_2 e^{-t} (1-1) - \frac{1}{2} e^t (01).$$

(c).
$$C_1 e^{3t} (11) + C_2 e^{-t} (1-1) + \frac{1}{2} e^t (01).$$

(d).
$$C_1 e^{3t} (11) + C_2 e^{-t} (1-1) + \frac{1}{2} e^t (10).$$

(e).
$$C_1 e^{3t} (11) + C_2 e^{-t} (1-1) - \frac{1}{2} e^t (10).$$

13. The system of nonlinear differential equations:

$$\frac{dx}{dt} = x - xy\frac{dy}{dt} = -y + xy$$

has an isolated critical point at (1,1). The linearization of this system around the critical point (1,1), using the coordinates u=x-1, v=y-1, is

(a).
$$\frac{d}{dt} (uv) = (100 - 1) (uv)$$

(b).
$$\frac{d}{dt} (uv) = (01 - 10) (uv)$$

(c).
$$\frac{d}{dt}(uv) = (1 - 111)(uv)$$

(d).
$$\frac{d}{dt}(uv) = (0 - 110)(uv)$$

(e).
$$\frac{d}{dt}(uv) = (0110)(uv)$$

14. Consider the nonlinear system of differential equations

$$\frac{dx}{dt} = y + x^2 \frac{dy}{dt} = -\sin x - y.$$

Classify the type and stability of the critical point at (0,0).

- (a). (0,0) is a spiral point and is unstable. (b). (0,0) is an improper node and unstable. (c). (0,0) is a saddle point and is unstable. (d). (0,0) is a center and is stable. (e). (0,0) is a spiral point and is asymptotically stable.
- 15. Find the eigenvalues of the matrix (0216 2090011)
- (a). 2i, -2i, 11 (b). 2, 2, 11 (c). 2i, -2i, 16 (d). 2, -2, 11 (e). 2i, -2i, 3i

16. Find all critical points for the following system of nonlinear differential equations:

$$\frac{dx}{dt} = x - x^2 - xy\frac{dy}{dt} = 2y - y^2 - 3xy$$

(a).
$$(0,0)$$
 (b). $(0,0)$, $(1,0)$ (c). $(0,0)$, $(1,0)$, $(0,2)$ (d). $(0,0)$, $(1,0)$, $(0,1)$, $(0,2)$ (e). $(0,0)$, $(1,0)$, $(0,2)$, $(\frac{1}{2},\frac{1}{2})$

17. Use the Liapunov function $V(x,y)=x^2+y^2$ to decide the stability of the critical point (0,0) of the system

$$\frac{dx}{dt} = x^3 - y^3 \frac{dy}{dt} = xy^2 + 4y^3.$$

(a). (0,0) is unstable. (b). (0,0) is asymptotically stable. (c). (0,0) is stable but not asymptotically stable. (d). (0,0) is a center and is stable. (e). One cannot conclude the stability from the Liapunov function.

18. Which of the following functions is not periodic? (a). $\sin \pi x$ (b). $(\cos x)^2$ (c). $e^x - e^{-x}$ (d). $e^{\cos x}$ (e). 100

19. Let $f(x) = x^3 + 1$ on $-1 < x \le 1$ and f(x+2) = f(x). What value does the Fourier series of f converges to at x = 1?

- (a). 2 (b). 0 (c). 1
- (d). -1 (e). The Fourier series diverges at x = 1. 20. What is the solution of the heat equation

 $\{4u_{xx} = u_t, \quad 0 < x < 2, \ t > 0u(0, t) = u(2, t) = 0, \quad 0 < tu(x, 0) = \sin \pi x, \quad 0 < x < 2\}$

(a). $u = e^{\frac{-\pi^2 t}{2}} \sin \pi x.$

- (b). $u = e^{-4\pi^2 t} \sin \pi x.$
- (c). $u = e^{\frac{-\pi^2 t}{4}} \sin \pi x.$
- (d). $u = e^{\frac{-\pi^2 t}{4}} \sin \frac{\pi x}{2}.$
- (e). $u = e^{4\pi^2 t} \sin \pi x.$

21. Consider the two-point boundary value problem

$$y'' + 9y = 0$$
, $y(0) = 1$, $y(\pi) = \alpha$.

For which value(s) of α does this problem have infinitely many solutions? (a). 0 (b). -1 (c). 1

(d). 1 or -1 (e). No α will satisfy the conditions. 22. Let f(x) = x, $0 \le x < 1$. Consider the even

extension of f and f(x+2) = f(x). The Fourier coefficient a_1 in

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\pi x + \sum_{n=1}^{\infty} b_n \sin n\pi x$$

is (a). 0 (b). $-\frac{2}{\pi}$ (c). $\frac{2}{\pi}$ (d). $-\frac{4}{\pi^2}$ (e). $\frac{4}{\pi^2}$ 23. Consider the equation

$$u_{xx} - u_{tt} = 0.$$

Let u = X(x)T(t) be a solution. Then X and T satisfy which of the following pairs of ordinary differential equations: (a). $X' + \lambda X = 0$, $T' + \lambda T = 0$ (b). $X'' + \lambda X = 0$, $T'' - \lambda T = 0$ (c).

$$X'' - \lambda X = 0$$
, $T' + \lambda T = 0$ (d). $X'' + \lambda X = 0$, $T'' + \lambda T = 0$ (e). $X'' + \lambda X = 0$, $T'' + \lambda^2 T = 0$

24. Let

$$f(x) = \{3, \qquad 0 < x < 10, \qquad 1 < x < 2.$$

Consider the odd extension of f(x) with f(x+4) = f(x). The Fourier coefficient a_5 in

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{2} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{2}$$

is

(a).
$$\frac{1}{5\pi}$$
 (b). $\frac{2}{5\pi}$ (c). $\frac{4}{5}$ (d). 0 (e). $\frac{-2}{5\pi}$

25. The sine series of f(x) = x, $0 \le x \le 2$ is

$$\sum_{n=1}^{\infty} \frac{4}{n\pi} (-1)^{n+1} \sin \frac{n\pi x}{2}.$$

What is the solution of the wave equation

$$\{u_{xx} = u_{tt}, \qquad 0 < x < 2, \ t > 0 \\ u(0,t) = u(2,t) = 0, \quad t > 0 \\ u(x,0) = x, \ u_t(x,0) = 0, \quad 0 < x < 2\}$$

(a).
$$u = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n\pi x}{2} \sin \frac{n\pi t}{2}.$$

(b).
$$u = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n\pi x}{2} \cos \frac{n\pi t}{2}.$$

(c).
$$u = -\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n\pi x}{2} \sin n\pi t.$$

(d).
$$u = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} e^{-\pi^2 n^2 t} \sin \frac{n\pi x}{2}.$$

(e).
$$u = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} e^{\frac{-\pi^2 n^2 t}{4}} \sin 2n\pi x.$$