Math 335-Final Exam

December 1992

1. The Archimedean Property for the real numbers \mathbf{R} states that
(a) If $a>0$ and $b>0$, then there exists some positive integer n such that $n a>b$.
(b) If $a>0$ and $b>0$ then $a b>0$.
(c) If $a>0$ then there exists a positive integer n such that $\frac{1}{a}>n$.
(d) the completeness axiom fails for the set \mathbf{Z} of integers.
(e) If $a>0$ and $b>0$ then there exists a positive integer n such that $a^{n}>b$.
2. The completeness axiom for the set \mathbf{R} of real numbers states that
(a) any nonempty subset of \mathbf{R} that is bounded above has a supremum.
(b) If S is a bounded subset of \mathbf{R} then the supremum of S is the maximal element of S.
(c) If $S \subset \mathbf{R}$ is bounded below then S has a supremum.
(d) If $S \subset \mathbf{R}$ is unbounded then S has no supremum.
(e) If a set $S \subset \mathbf{R}$ has no supremum, then S is empty.
3. Only one of the following relations below is true for all integers $n \geq 1$. Which one is it?
(a) $7^{n}-6 n-1$ is divisible by 36
(b) $1+2+\cdots+n=\frac{n(n-1)}{2}$
(c) $\sum_{k=1}^{n}(0.99999)^{k} \leq 100$
(d) $\sum_{k=1}^{n} k!=(n+1)$!
(e) $1^{2}+2^{2}+\cdots+n^{2}=(n+1)(n+2)(n+3)$
4. Let f be a real-valued function whose domain is the set of all real numbers. Suppose that f is NOT continuous at a. Which one of the following statements is then necessarily true?
(a) There exists $\epsilon>0$ such that for any $\delta>0$ there exists an x with $|x-a|<\delta$ and $|f(x)-f(a)| \geq \epsilon$.
(b) For any sequence $\left(x_{n}\right)$ with $\lim x_{n}=a, \lim f\left(x_{n}\right) \neq f(a)$.
(c) For any $\epsilon>0$ there exists $\delta>0$ such that $|x-a|<\delta$ implies $|f(x)-f(a)| \geq \epsilon$.
(d) For any $\epsilon>0$ and $\delta>0$ there exists an x such that $|x-a|<\delta$ and $|f(x)-f(a)| \geq \epsilon$.
(e) There exists a sequence $\left(x_{n}\right)$ such that $\lim x_{n}=a$ and $\lim f\left(x_{n}\right)=\infty$.
5. Consider the following three statements about sequences:

〈1) Every monotone sequence has a bounded subsequence.
2) Every convergent sequence is bounded.
$\langle 3\rangle$ Every bounded sequence has a Cauchy subsequence.
Which of these statements are true?
(a) $\langle 2\rangle$ and $\langle 3\rangle$
(b) $\langle 1\rangle$ and $\langle 3\rangle$
(c) $\langle 1\rangle$ and $\langle 2\rangle$
(d) only $\langle 1\rangle$
(e) only $\langle 3\rangle$
6. Consider the sequence $\left(f_{n}\right)$ of functions on the interval $[0,2]$ given by $f_{n}(x)=\frac{x^{n}}{2^{n}}$. Which one of the following statements accurately describes the behavior of this sequence?
(a) The sequence converges pointwise to a function which is not continuous.
(b) The sequence converges pointwise to a continuous function, but does not converge uniformly.
(c) The sequence does not converge pointwise to any function.
(d) The sequence converges uniformly to a function which is not continuous.
(e) The sequence converges uniformly to a continuous function.
7. Let $\left(s_{n}\right)$ be the sequence given by $s_{n}=\frac{2^{1 / n}+4^{-n}}{n^{1 / n}+5 n}$. Then $\lim s_{n}$ is
(a) 0
(b) ∞
(c) 1
(d) $1 / 5$
(e) $2 / 5$
8. Which one of the following functions on $(0,1]$ can be extended to a continuous function on $[0,1]$?
(a) $f(x)=x \cos (1 / x)$
(b) $f(x)=\frac{\cos x}{x}$
(c) $f(x)=\cos (1 / x)$
(d) $f(x)=\frac{x+1}{x^{3}+2 x^{2}+x}$
(e) $f(x)=\max (x, 1 / x)$
9. Which one of the following statements is true?
(a) Any uniformly continuous function on $(2,7)$ is bounded.
(b) Any bounded continuous function on $(2,7)$ is uniformly continuous.
(c) Any one-to-one (i.e. injective) continuous function on $(2,7)$ is bounded.
(d) If $f(x)$ is continuous on $(2,7)$ then there exists $x \in(2,7)$ with $f(x)=5$.
(e) if $f(x)$ is continuous on $(2,7)$ then there exists a sequence $\left(x_{n}\right)$ of points from $(2,7)$ such that $\lim x_{n}=2$ and $\left\{f\left(x_{n}\right): n \geq 0\right\}$ is bounded.
10. Suppose that $\sum a_{n}$ and $\sum b_{n}$ are convergent series with $a_{n}>0$ and $b_{n}>0$. Which one of the following four series is necessarily convergent? (Hint: You might try using the comparison test, or search for examples among the class of p-series.)
(a) $\sum a_{n} b_{n}$
(b) $\sum \frac{a_{n}}{b_{n}}$
(c) $\sum \sqrt{a_{n}}$
(d) $\sum \frac{1-a_{n}}{1+b_{n}}$
(e) $\sum \frac{1}{\sqrt{a_{n}}}$
11. Suppose that f and g are real-valued functions with domain the set of all real numbers. Which one of the following statements is FALSE? (Note that $f \circ g$ denotes the composite of f with g.)
(a) If f is continuous and $f \circ g$ is continuous then g is continuous.
(b) If f is continuous and g is continuous then $f+g+f \circ g$ is continuous.
(c) If f and g are continuous then $\min (f, g)$ is continuous.
(d) If f and g are continuous then $|f g|$ is continuous.
(e) If $f(x)$ is continuous then $\sqrt{|f|}$ is continuous.
12. Consider the series $\sum \frac{x^{n}}{2^{n}(n+1)^{2}}$. What is its radius of convergence?
(a) 2
(b) 1
(c) 0
(d) ∞
(e) 4
13. Recall that the interval of convergence of a power series is the set of numbers x for which the power series converges. What is the interval of convergence for the series $\sum \frac{x^{n}}{n} ?$
(a) $[-1,1)$
(b) $(-\infty, \infty)$
(c) $(-1,1)$
(d) $(0, \infty)$
(e) $[-1,1]$
14. Let $\left(s_{n}\right)_{n \geq 1}$ be the sequence defined inductively by setting $s_{1}=1$ and $s_{n+1}=\frac{s_{n}}{2}+\frac{2}{s_{n}}$. You may take it for granted that this sequence converges. The limit of the sequence is
(a) 2
(b) $\sqrt{2}$
(c) 4
(d) 0
(e) 1
15. Which one of the following series converges? (Note that, for a real number x, the notation $\lfloor x\rfloor$ denotes the greatest integer with is less than or equal to x.)
(a) $\sum(-1)^{n} \frac{1}{\lfloor n \pi\rfloor}$
(b) $\sum \frac{1}{\sqrt{n} \log n}$
(c) $\quad \sum(-1)^{n} \sin \left(\frac{n \pi}{6}\right)$
(d) $\sum(-1)^{n} \frac{n!}{2^{n}}$
(e) $\sum\left\lfloor 2^{n} / n^{2}\right\rfloor$

