Math 335–Final Exam December 1992

- 1. The Archimedean Property for the real numbers \mathbf{R} states that
 - (a) If a > 0 and b > 0, then there exists some positive integer n such that na > b.
 - (b) If a > 0 and b > 0 then ab > 0.
 - (c) If a > 0 then there exists a positive integer n such that $\frac{1}{a} > n$.
 - (d) the completeness axiom fails for the set **Z** of integers.
 - (e) If a > 0 and b > 0 then there exists a positive integer n such that $a^n > b$.
- 2. The completeness axiom for the set \mathbf{R} of real numbers states that
 - (a) any nonempty subset of **R** that is bounded above has a supremum.
 - (b) If S is a bounded subset of **R** then the supremum of S is the maximal element of S.
 - (c) If $S \subset \mathbf{R}$ is bounded below then S has a supremum.
 - (d) If $S \subset \mathbf{R}$ is unbounded then S has no supremum.
 - (e) If a set $S \subset \mathbf{R}$ has no supremum, then S is empty.
- 3. Only one of the following relations below is true for all integers $n \ge 1$. Which one is it?

(a)
$$7^n - 6n - 1$$
 is divisible by 36 (b) $1 + 2 + \dots + n = \frac{n(n-1)}{2}$ (c) $\sum_{k=1}^n (0.99999)^k \le 100$
(d) $\sum_{k=1}^n k! = (n+1)!$ (e) $1^2 + 2^2 + \dots + n^2 = (n+1)(n+2)(n+3)$

- 4. Let f be a real-valued function whose domain is the set of all real numbers. Suppose that f is **NOT** continuous at a. Which one of the following statements is then necessarily true?
 - (a) There exists $\epsilon > 0$ such that for any $\delta > 0$ there exists an x with $|x a| < \delta$ and $|f(x) f(a)| \ge \epsilon$.
 - (b) For any sequence (x_n) with $\lim x_n = a$, $\lim f(x_n) \neq f(a)$.
 - (c) For any $\epsilon > 0$ there exists $\delta > 0$ such that $|x a| < \delta$ implies $|f(x) f(a)| \ge \epsilon$.
 - (d) For any $\epsilon > 0$ and $\delta > 0$ there exists an x such that $|x a| < \delta$ and $|f(x) f(a)| \ge \epsilon$.
 - (e) There exists a sequence (x_n) such that $\lim x_n = a$ and $\lim f(x_n) = \infty$.
- 5. Consider the following three statements about sequences:
 - (1) Every monotone sequence has a bounded subsequence.
 (2) Every convergent sequence is bounded.
 (3) Every bounded sequence has a Cauchy subsequence.

Which of these statements are true?

k=1

- (a) $\langle 2 \rangle$ and $\langle 3 \rangle$ (c) $\langle 1 \rangle$ and $\langle 2 \rangle$ (d) only $\langle 1 \rangle$ (e) only $\langle 3 \rangle$ (b) $\langle 1 \rangle$ and $\langle 3 \rangle$
- 6. Consider the sequence (f_n) of functions on the interval [0,2] given by $f_n(x) = \frac{x^n}{2^n}$. Which one of the following statements accurately describes the behavior of this sequence?
 - (a) The sequence converges pointwise to a function which is not continuous.
 - (b) The sequence converges pointwise to a continuous function, but does not converge uniformly.
 - (c) The sequence does not converge pointwise to any function.
 - (d) The sequence converges uniformly to a function which is not continuous.
 - The sequence converges uniformly to a continuous function. (e)

7. Let
$$(s_n)$$
 be the sequence given by $s_n = \frac{2^{1/n} + 4^{-n}}{n^{1/n} + 5n}$. Then $\lim s_n$ is
(a) 0 (b) ∞ (c) 1 (d) 1/5 (e) 2/5

8. Which one of the following functions on (0, 1] can be extended to a continuous function on [0, 1]?

(a)
$$f(x) = x \cos(1/x)$$
 (b) $f(x) = \frac{\cos x}{x}$ (c) $f(x) = \cos(1/x)$ (d) $f(x) = \frac{x+1}{x^3+2x^2+x}$

- (e) $f(x) = \max(x, 1/x)$
- 9. Which one of the following statements is true?
 - (a) Any uniformly continuous function on (2,7) is bounded.
 - (b) Any bounded continuous function on (2,7) is uniformly continuous.
 - (c) Any one-to-one (i.e. injective) continuous function on (2,7) is bounded.
 - (d) If f(x) is continuous on (2,7) then there exists $x \in (2,7)$ with f(x) = 5.
 - (e) if f(x) is continuous on (2,7) then there exists a sequence (x_n) of points from (2,7) such that $\lim x_n = 2$ and $\{f(x_n) : n \ge 0\}$ is bounded.
- 10. Suppose that $\sum a_n$ and $\sum b_n$ are convergent series with $a_n > 0$ and $b_n > 0$. Which **one** of the following four series is necessarily convergent? (Hint: You might try using the comparison test, or search for examples among the class of *p*-series.)

(a)
$$\sum a_n b_n$$
 (b) $\sum \frac{a_n}{b_n}$ (c) $\sum \sqrt{a_n}$ (d) $\sum \frac{1-a_n}{1+b_n}$ (e) $\sum \frac{1}{\sqrt{a_n}}$

- 11. Suppose that f and g are real-valued functions with domain the set of all real numbers. Which **one** of the following statements is **FALSE**? (Note that $f \circ g$ denotes the composite of f with g.)
 - (a) If f is continuous and $f \circ g$ is continuous then g is continuous.
 - (b) If f is continuous and g is continuous then $f + g + f \circ g$ is continuous.
 - (c) If f and g are continuous then $\min(f, g)$ is continuous.
 - (d) If f and g are continuous then |fg| is continuous.
 - (e) If f(x) is continuous then $\sqrt{|f|}$ is continuous.

12. Consider the series
$$\sum \frac{x^n}{2^n(n+1)^2}$$
. What is its radius of convergence?
(a) 2 (b) 1 (c) 0 (d) ∞ (e) 4

13. Recall that the *interval of convergence* of a power series is the set of numbers x for which the power series converges. What is the interval of convergence for the series $\sum \frac{x^n}{n}$?

(a)
$$[-1,1)$$
 (b) $(-\infty,\infty)$ (c) $(-1,1)$ (d) $(0,\infty)$ (e) $[-1,1]$

- 14. Let $(s_n)_{n\geq 1}$ be the sequence defined inductively by setting $s_1 = 1$ and $s_{n+1} = \frac{s_n}{2} + \frac{2}{s_n}$. You may take it for granted that this sequence converges. The limit of the sequence is
 - (a) 2 (b) $\sqrt{2}$ (c) 4 (d) 0 (e) 1
- 15. Which **one** of the following series converges? (Note that, for a real number x, the notation $\lfloor x \rfloor$ denotes the greatest integer with is less than or equal to x.)

$$\underbrace{(a)}_{(e)} \sum (-1)^n \frac{1}{\lfloor n\pi \rfloor}$$

$$(b) \sum \frac{1}{\sqrt{n} \log n}$$

$$(c) \sum (-1)^n \sin(\frac{n\pi}{6})$$

$$(d) \sum (-1)^n \frac{n!}{2^n}$$

$$(e) \sum \lfloor 2^n/n^2 \rfloor$$