by -8.9 in
Name:
depth0.0cm

$$
\text { MATH 335: Real Analysis I - FALL } 2000
$$

Problem 1.

Do four of the following five (5 points each).
(a) State the definition of the Cauchy sequence in a metric space (M, ρ).
(e) Let $\left\{f_{n}\right\}$ be a sequence of functions defined on the set $E \subset \mathbb{R}$. Define what it means for f_{n} to converge uniformly to a function f defined on E.

Problem 2.

Do five of the following seven (5 points each). Explain your answers. If necessary, provide a counterexample.
(a) True or false: if a sequence of uniformly continuous functions on $[0,1]$ converges point-wise to a function f, then f is uniformly continuous.
(d) True or false: for $f \in C[a, b],\|f\|_{\infty} \leq$ 1implies- $\mathrm{f}(\mathrm{x})-\leq 1$ for all $x \in[a, b]$
(g) If $f \in C^{1}[1,2], f(1)=2$ and $\left|f^{\prime}(x)\right| \leq 0.1$ for every $x \in[1,2]$, what is the largest possible value for $f(2)$?

Problem 3. (15 points)
State and prove an important theorem from this class.

Problem 4. (10 points)
Prove that $f(x)=\sqrt{x}$ is uniformly continuous on $[0$, $\infty)$.

Problem 5. (10 points)
For which $\alpha \geq 0$ an improper integral

$$
\int_{0}^{\infty} \frac{1}{(x+1)^{\alpha}} d x
$$

exists.

Problem 6. (10 points)
Let f belong to $C^{1}[a, b]$. Assume that $f^{\prime}(x)<0$ for every $x \in[a, b]$. Show that $f(x)$ is strictly decreasing on $[a, b]$.

Problem 7. (10 points)
Find the second Taylor polynomial $T^{(2)}\left(x, x_{0}\right)$ for a function $f(x)=\ln \left(1+x^{2}\right)$ at $x_{0}=1$.

