Math 335 Real Analysis

Exam I

September 21, 2001

Answer all 5 questions. All questions have equal points. Symbols and markings without complete sentences will not be considered as answers.

- 1. Let f be a function defined on \mathbf{R} and L a real number.
 - a) Define what is meant by $f(x) \to L$ as $x \to a$.
 - b) Define what is meant by saying f is continuous at x = a.

Let $f(x) = x^2 + 1$.

Find δ so that $|f(x) - f(o)| < \epsilon$ when $|x - o| < \delta$. Your answer will give δ in terms of ϵ .

2. Suppose f_1 and f_2 are two functions defined on **R** and $\lim_{x \to a} f_1(x) = L_1$ and $\lim_{x \to a} f_2(x) = L_2$. Define $g(x) = f_1(x) + f_2(x)$. Prove that $\lim_{x \to a} g(x) = L_1 + L_2$. 3. Let a > -1. Use induction to prove $(1 + a)^n \ge 1 + na$ for all positive integers n.

4. Determine each of the following limits:

i)
$$\lim_{n \to +\infty} (3 + \cos n)n$$

ii)
$$\lim_{x \to 2^{-}} \frac{\sqrt{4-x^2}}{\sqrt{6-5x+x^2}}$$

iii)
$$\lim_{x \to 0} \frac{\sin^2 x}{x^2}$$

You must give the basis of your determination in each case.

5. Let f be a function on $\mathbb R$ defined by

$$f(x) = \begin{cases} \frac{2(x^2-9)}{x-3} & x \neq 3\\ 12 & x=3 \end{cases}$$

Show that $|f(x) - f(3)| < \epsilon$ when $|x-3| < \frac{\epsilon}{2}$, for all $\epsilon > 0$.
Is the function of continuous at $x = 3$? Yes or No.