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  The book is at an appropriate level for the course.  As real 

analysis books go, it is fairly easy.  There is a good range of 
problems, from very easy to fairly difficult (although few could be 
described as very difficult).  I did not think the chapter on 
"Integration in ÂN" was very good, but, after doing it and looking at 
other treatments, I have decided that the Riemann and Darboux 
integrals are inherently excessively messy in ÂN, and a good 
treatment of integration in ÂN requires doing the Lebesque integral, 
which should not be done at this level.  I suggest that the topic be 
left out of the course.  Instead, one could do parts of Chapter 11 
(Functions defined by integrals; improper integrals) and the 
Weierstrass Approximation Theorem.  The other chapters I did from 
the book were good. 

 One minor caution to anyone using the book – some problems refer 
back to earlier problems.  Occasionally the number of the earlier 
problem is incorrect (as a result of not changing such references 
after inserting new problems in the second edition.)  

  We will use the book again next year. 
 


