
1. (20 pts) The following strange inequality turns out to be true:∫ 2π

−2π

x2 sin8(ex) dx ≤ 16π3

3
.

Find a proof of this inequality. You might have some success using general properties of
the integral, especially properties that involve inequalities and/or absolute values.

2. (30 pts) Let (Fn) be a decreasing sequence (i.e., F1 ⊃ F2 ⊃ F3 · · ·) of closed bounded
nonempty sets in Rn. Prove that the intersection F = ∩∞n=1Fn is also closed, bounded
and nonempty.

3. Let (fn) be the sequence of functions given by fn(x) = e−n(x2+1). Note that (fn) converges

uniformly on [0, 1]. Calculate lim
n→∞

∫ 1

0

fn(x) dx.

(a) 0 (b) e/2 (c) e (d) ∞ (e) 1

4. Calculate the derivative of the function f(x) = (sinx)cos x, x in (−π/2, π/2). Be careful!

(a) f ′(x) = ln(sinx) (sinx)cos x + (sinx)1+cos x (b) f ′(x) = cos2 x (sinx)(−1)+cos x

(c) f ′(x) = cos2 x (sinx)(−1)+cos x − ln(sin x) (sinx)1+cos x

(d) f ′(x) = cos2 x (sinx)1+cos x − ln(sin x) (sinx)(−1)+cos x

(e) f ′(x) = − cos x (sinx)cos x

5. Let f(x) be the function defined by the following rule:

f(x) =
{

2x, if x ≤ 1;
−x, if x > 1.

Consider the function g(x) =
∫ x

0

f(t) dt. Which one of the following statements about g

is true?

(a) g(x) is defined and differentiable on (0,∞), but g′(x) is not continuous on (0,∞).

(b) g(x) is defined and continuous on (0,∞), but is not differentiable for x = 1.

(c) g(x) is defined and differentiable on (0,∞), and g′(x) is continuous on (0,∞).

(d) g(x) is defined for all x > 0, but is not continuous at x = 1.

(e) g(x) is not defined for x > 1 because the function f is not integrable on [0, x] for
x > 1.
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6. Let E be the set of rational numbers, considered as a subset of the metric space R of real
numbers. Which one of the following statements about E is true.

(a) The interior of E is the empty set, the closure of E is E itself, and the boundary of
E is E itself.

(b) The interior of E is R, the closure of E is R, and the boundary of E is the empty
set.

(c) The interior of E is the empty set, the closure of E is R, and the boundary of E is
R.

(d) The interior of E is E itself, the closure of E is R, and the boundary of E is the set
of irrational numbers.

(e) The interior of E is the empty set, the closure of E is R, and the boundary of E is
the set of irrational numbers.

7. Which one of the following statements about the Darboux integral is FALSE?

(a) Every continuous function on [a, b] is integrable.

(b) Every integrable function on [a, b] is continuous.

(c) A bounded function f on [a, b] is integrable if an only if for each ε > 0 there exists a
partition P of [a, b] such that U(f, P )− L(f, P ) < ε.

(d) Any integrable function f on [a, b] is bounded.

(e) A bounded function f on [a, b] is integrable if and only if the supremum of the lower
Darboux sums for f on [a, b] is equal to the infimum of the upper Darboux sums for
f on [a, b].

8. Let f(x) = (x−1)3 +
1
3
(x+1)3. Compute the degree two Taylor expansion of f(x) around

the point x = 0.

(a) −2
3

+ 4x− 2x2 (b)
2
3
− 3x + 3x2 (c)

2
3
− x

3
+

x2

6
(d)

2
3

+ 6x

(e)
2
3

+
2x

3

9. Consider the function f(x) = x3, which is continuous and increasing on (−∞,∞). Let g(y)
be the inverse function to f . Which one of the following statements about these functions
is true?

(a) Although f takes on all real values, its inverse g is only defined for y ≥ 0.

(b) g′(1) = 2/3

(c) Since f is an increasing function, its inverse g is a decreasing function.

(d) Since the function f is differentiable, so is its inverse g.

(e) The function g(y) is continuous but is not differentiable for y = 0.
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10. Which one of the following inequalities is true? (You might try for instance proving these
inequalities with the Mean Value Theorem.)

(a) | cos x− cos y| ≤ |x− y|2 for x, y in R.

(b) | sinx− sin y| ≥ |x− y| for x, y in R.

(c) ex ≥ |x| for x in (−1, 0)

(d) | cos x− cos y| ≤ |x− y| for x, y in R.

(e) sin x ≥ x for x in (0, 1).

11. Which of the following statements gives an accurate representation of the Weierstrass
Approximation Theorem?

(a) Every bounded continuous function on R can be uniformly approximated by polyno-
mials on R.

(b) Every continuous function on a closed interval [a, b] can be uniformly approximated
by polynomials on [a, b].

(c) Any uniformly continuous function on R can be uniformly approximated by polyno-
mials on R.

(d) Any sequence of polynomial functions on a closed interval [a, b] converges to a con-
tinuous function on [a, b].

(e) If a sequence of polynomials converges uniformly on a closed interval [a, b], then the
sequence converges to a polynomial function.

12. Consider the function f(x) =
∫ x

0

et2 dt. What is the Taylor series expansion for f around

the point x = 0 ?. (Hint: first find the corresponding Taylor series expansion for g(x) =

ex2
. Note that if

∞∑
k=0

akxk is the Taylor expansion of a function g(x) , then
∞∑

k=0

akx2k is

the Taylor expansion for g(x2) ).

(a)
∞∑

n=0

x2n+1

(2n)!
(b)

∞∑
n=0

x2n

(2n + 1)!
(c)

∞∑
n=0

x2n+1

(2n + 1)(n!)
(d)

∞∑
n=0

xn+1

(2n + 1)!

(e)
∞∑

n=0

x2n

(n + 1)!
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Prof:

3. (•) (b) (c) (d) (e)

4. (a) (b) (•) (d) (e)

5. (a) (•) (c) (d) (e)

6. (a) (b) (•) (d) (e)

7. (a) (•) (c) (d) (e)

8. (•) (b) (c) (d) (e)

9. (a) (b) (c) (d) (•)
10. (a) (b) (c) (•) (e)

11. (a) (•) (c) (d) (e)

12. (a) (b) (•) (d) (e)

Mult. Choice

1

2
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