
TEST Instructions

December, 1990

The purpose this set of macros, hereafter TEST, is to assist in the preparation
of multiple choice tests. The first part of the preparation process involves typing
in the test. Begin by typing \problem, and then type the problem just as you
normally would in TEX. Then you type the multiple–choice answers: proceed each
wrong answer with a \wrong command and proceed the correct answer with a
\correct command. If you do not want any multiple choice answers, just don’t
type any. The problems will be numbered automatically when typeset, but we
will also refer to the first problem in the file, the second problem in the file and
so on. The file should conclude with an \end or \bye statement.

There is also a \note command: when you have some material which is not
a problem but which should appear in the test you type \note and then the
material. For example, if you have a true-false section, you might want to put
a note at the start of this part to warn the students and to tell them how much
each of these problems is worth. Notes should not have answers nor will they be
numbered in the output, but they do acquire a number based on their order in
the file: the first note is note 1, and so on. (Actually, notes can be numbered if
you want and indeed the entire labelling process for both note and problems can
be controlled by you, the user [see the Extras section below].)

You may have up to five different answers, but you don’t need to have that
many: just type in as many as you want (up to five), but if you have any answers,
exactly one of them must be marked correct. If the problem is a true-false question
just type \Tf or \tF after you are done with the problem. This tells TEST that
there are two answers; if you typed \Tf then TRUE is the correct answer; if you
typed \tF then the correct answer is FALSE.

Any time during this process, you may TEX the document. You will get the
problems set in the same order that they occupy in the file, and each problem will
have the answers typeset after the problem, again in their natural order, with an
underline next to the one that you indicated was the correct one. The notes will
also appear at the location that they occupy in the file. The spacing between the
lines will be rather cramped, but this will be adjusted later. The purpose of this
part is just to get the data entered and to let you print it out for proof–reading.
By default, your problems will be TEX’ed with no magnification at this stage,
but, in the final run, magnification will be automatically set to \magstep1. (You
can change this with the \setmag command: \setmag{1000} is equivalent to
\magnification 1000 and must be invoked near the beginning of your document.
If you do it too late you will get the TEX incompatible magnifications error. If
you want even the proof–reading runs at \magnification 1200, just include
\magnification 1200 at the start of your file.)

When you are entering the test, TEST behaves much like TEX itself, so you
should get the desired results easily. One caveat is that braces tend to get removed

1

in the input process so you should be generous. If you want “aardvark” to be
bold, the usual TEX way to achieve this is to type {\bf aardvark }. Having so
few braces is dangerous with TEST since the braces may get stripped off, turning
the rest of your test turn into bold. The safe way to avoid this is to type {{
\bf aardvark }} so that, if a layer of braces is removed, one still remains and if
both get through, no harm is done.

For people who like to write their own macros and things, life is a little
more difficult and some understanding of how TEST works is needed before you
will achieve the desired results. First of all, the commands \problem and \n-
ote are actually macros and hence may contain nothing that any other macro
may not contain:e.g. \newcount is \outer and hence not permitted after the
first \note or \problem. All the material between two consecutive \problem
commands (or a consecutive \note and \problem command, or two consecutive
\note commands, etc.) is read in, processed, and stored in a box: each answer is
also read in, processed, boxed; and then the boxes are assembled into the correct
order and put into the corresponding problem box. The net result of this is that
material in the body of the test is nested inside several boxes and/or brace pairs.

Macros which are defined BEFORE the first \note or \problem command
should work as expected, but any macro defined after this should be defined with
\gdef or it probably will not work when you apply it. If you need to change a
constant that you have defined, you should probably use the \global command or
the constant will not change where you think it should. TEST will usually read your
file several times (once for each version that it is producing). Some macros should
not be read twice and this does not happen to macros defined before the first
\note or \problem command. The mechanism which insure this behavior does
result in a peculiarity: if you must define some macro to be \outer, it must
contain the letter w somewhere in its name, or TEST will be unable to handle
more than one version of your test at a time. Also, for people who do alignments,
\+ has been set to \tabalign. Macros defined after the first \note or \problem
command will be read each time a new version of the test is produced and so
should be designed not to crash when read twice.

TEST does not do too much to plain TEX and so should run with other macro
packages. It does modify plain TEX’s \shipout, \end and \bye commands and
so TEST should be loaded after any package which also modifies these. The author
has not tried to run TEST under AMSTEX, but it might work (try to produce a
format file in which you have TEX’ed the TEST macros using AMSTEX). Under
LATEX things may be more difficult.

TEST uses plain TEX’s \headline and \footline. If you need headlines or
footlines (particularly to write your own page numbering routines) we have sup-
plied \myheadline and \myfootline. See the section, Extras, below for details.

A final warning: TEST will need to input your file several times during one
run, which it does using the standard TEX \input command. This places some
restrictions on file names. The worst restriction for a Macintosh user is that your
file name must NOT contain any SPACES. (There are other offending characters,

2

but spaces are the most common.) For safety, only use the letters a–z, A–Z, or
numbers. If you want spaces, use the standard “kludge” of x y for x y.

§1. Permutations and typesetting.Once you have the data entered, it is easy
to permute either the answers or the problems (or both). Of course you have
to describe to TEST how you want the permutations done. A version of the test
consists of the text you typed in plus a choice of ordering for the answers to each
problem and a selection and ordering for the problems. For each version, you
must describe a selection of problems and notes from your file and in what order
you want them to appear in the typeset document. You must also describe a
permutation for the answers to each problem for each version.

Each version of your test has a number associated to it, which is used to
explain to TEST the version to which your permutation data applies. There is
a variable, \firstversion, which is 1 by default but which you may set to any
value you wish. There is also a variable, \lastversion, and TEST thinks that
your versions are numbered consecutively from \firstversion up to \lastversio-
n. There is probably some limit to the number of versions, but the author has not
had the patience to locate it (at this time it is at least greater than 50). (Versions
with numbers greater than 100000 are used by TEST to indicate it is in a special
situation and these numbers should not be used by the casual user.)

By default, \lastversion is 0, but when you include the command \lastvers-
ion =n in your file, you will TEX all the versions of the test from \firstversion to
\lastversion. By adjusting \firstversion and \lastversion you can TEX any
one version of the test or any range of them.

Version 0 is special (and is the one which occurs if you have not yet included a
\lastversion =n command). It will give you a printout of the test with problems
and answers having the same order as they do in the file, but with the spacing
between problems suppressed. Furthermore, the correct answer has an underline
next to it. You may also set \lastversion =−n: you will get a printout with
all the permutations for version n, but the spacing will be the usual version 0
“cramped–style”. (This is useful for giving versions to TA’s or colleagues to have
them worked.)

In the coming paragraphs, we will describe how to explain to TEST how you
want the answers for each problem permuted (from their order in the file) for each
version and which problems and notes (and in what order) from the file you wish
included in each version.

Each multiple–choice problem for a version needs to have a permutation to
tell TEST in what order to set the answers. Problems which are not multiple choice
do not have permutations and neither do problems which are true-false: for these,
the choice is always true, then false.

We begin by describing how to permute the answers corresponding to a fixed
version, say v. The simplest way to do this is to place a permutation command in
each problem. If there are 5 answers, a typical permutation command looks like
\permv:baced, where v is the version number. If there are only four answers, you
may leave out the e, or you may put it last. A command \perm w:cdeab, where

3

w is a number different from v will be ignored when typesetting version v, but
will come into its own when typesetting version w.

When you typeset version v, the answers for this problem will be permuted
from their order in the file as follows: the first answer in this version will be the
old (b); the second will be the old (a); the third the old (c); the fourth the old (e);
and the last, the old (d). (Recall that you can get a printout of the answers in
their natural order, with the correct one indicated, by just TEX’ing the file with
\lastversion=0 [which is the default].)

The \perm command for the problem may be placed anywhere after the
\problem command which begins the problem and before the next \problem or
\note command.

There are two additional ways to produce the permutation data for the an-
swers. You may want to declare a global permutation. The command \set-
globalperms{ \permv1:abcde \permv2:cdeba ,etc.} sets every permutation for
every problem for version number v1 to abcde; the permutation for every prob-
lem for version number v2 will be cdeba. You may declare as many of these as
you need and they need not be in any particular order. If you only want four
answers, you can use all 5 letters and make the last one e, or you need only use
the first 4. This command needs to be placed before the first \problem or
\note command. It is most useful if you have entered the answers in the file in an
order that you want to typeset. If you want version 1 to have the answers in their
natural order, the one command, \setglobalperms{ \perm1:abcde }, will do
this. A shorter version of this command which also works is \setglobalperms{
\perm1:}.
Note: All \perm commands are just a bit fussy as to spacing. The permtation
itself (the abcde part) may not have any spaces in it. What happens is that TEST
reads up to the colon to see if the version number applies. If it does, it begins to
read in letters, one at a time until it hits a character that is not an a–e, at which
point it quits. (This same algorithm applies if it is trying to skip the rest of a
\perm command because the version for it does not apply.) The permutation
that will be built is the one which sends ‘a’ to the first character read; ‘b’ to the
second; ‘c’ to the third; and so on. If TEST quits before reading 5 characters, the
unread ones are send to themselves. Hence \permv:ea will result in a map which
is not a permutation since the last answer in the file is to be set as ‘a’ (from the
\perm command) and as ‘e’ (by default since 5 letters were not read). This is
NOT COOL.

You may put a \perm v: command in a particular problem and it will take
precedence over the global one for version number v of that problem. This means
that you can do a global permutation which looks good for all but a small number
of problems, and then permute the answers for these problems separately.

You may also enter a complete list of permutations for a version all at once.
The command \setpermlist{· · ·} will do this. It needs to be placed before the
start of the test proper:i.e. before the first \problem or \note command. It
can be placed in a separate file as long as this file is \input’ed sometime before

4

the start of the test proper. The material between the braces has a rather rigid
format. You start with a“ \permv:” command; on a new line (or at least after
a space) type the permutation for problem 1, say abcde; on the next line type
the permutation for the second problem; etc. until you have one permutation for
each problem, one permutation per line. If there are only four answers for a given
problem you can either use all five letters with e last again or just use a–d. As
usual, you may not have any spaces between the letters. In this mode you may
include more material after the permutation as long as it contains no spaces and
begins with some character other than a–e. This material is ignored by TEST,
but can be helpful to you. For example, you can put the problem number after
the permutation: a line which looks like cdeab17 is a good way to remember that
cdeab is attached to problem 17. BUT, remember cdeab 17 is a bad ERROR
because of the space. After you have entered the data for one set of permutations,
you may enter the data for another or just close the command with a }. The
\perm commands do not need to be in any particular order. You must also
remember that true-false questions may not have permutations, but if you create
this file by just working your way through a copy of the test (with the problems
in their natural order) you will generate the correct file. There are also other
programs which you can use to generate a file of random permutations which you
can easily edit to be fodder for this macro.

If you have two (or more) versions with the same permutations for the an-
swers, you may type “\perm v1&v2:” and then the list: this is equivalent to “
\perm v1:” and the list followed by “\perm v2:” and the same list.

You may still put a “\perm v:” command in a problem and it will take
precedence over the one for version number v set from the list. It seems rare that
you would want to do this and you still must have an entry in the list for the
problem even though it is to be ignored. (It is occasionally useful for trying out a
new permutation before putting it in the list.) You may also use a different method
to enter the permutations for different versions: the method for one version could
be global; the method for another could be from a list; and the method for a third
could be from \perm commands after each problem.

If TEST encounters a multiple–choice problem for which it can find no permu-
tation for the answers, it displays a message, uses abcde as a default permutation,
and continues. You will need to re–TEX the file after entering the desired permu-
tation, but this error will not mess up the run too badly so usually you may as
well finish and see if you have forgotten more than one permutation.

There are two other errors associated with multiple–choice answers. If no
\correct answer is given for a problem, TEST complains by writing a note to
the log file for you. This error is annoying, but will not mess up your run too
badly: TEST assumes that the correct answer is the first one in your file and goes
on (this can be serious if you believe the subsequent marked answer sheet). A
more serious problem is to have two (or more) \correct answers. Again TEST
will complain in the log file. If you really have just marked two answers correct,
then this is not so serious, but the most common cause of this error is to forget a

5

\problem command. TEST now thinks your problem text is part of an answer,
which will look strange, but more seriously it now thinks you have ten answers
for this problem. This is too many; TEST will over–write some registers; and all
bets as to subsequent behavior are off.

Once the permutation data for the answers is in place you may consider
modifying the order of the problems. If you wish all versions to have the same
problems in the same order as in the file, then you are done.

You may also prepare versions of the test using a subset of the problems in the
file and these problems may appear in any order you wish. To do this you need the
\setproblempermutations{· · ·} command. The material between the braces
has the following format. Begin with a “\versionv:” to explain to TEST the
reordering for version v. Next comes a stream of data to tell TEST how to unbox
the data it has saved. The entries in this list are separated by COMMA’s and a
number means to unbox the problem which had that number in the file. There
are two other possible entries in this stream: a “pb.” (the period after the “pb”
is important) will force a page break at this point; an “n.x” will unbox note
number x at this point. You need not use the entire list of problems, TEST just
runs through your list doing the unboxing and page breaks as requested, and then
quits when it reaches the end of the list. (Perhaps \setproblempermutations
is not the best name for this command since it will select a proper subset of the
problems as well as permute them.)

If you want the same problem list for two (or more) versions, you can type “
\versionv1&v2:” and then the list.

When you are typesetting a version of the test using the natural order for the
problems, you can force a page break with the \pagebreak command. TEST will
not break in the middle of a note or problem. Hence the break occurs immediately
after the note or problem in which the \pagebreak command is given and will
cause the next problem or note to appear at the top of a new page. If you are
typesetting version v, and there is a \versionv in \setproblempermutation-
s, any \pagebreak commands in the file are ignored and the page breaks are
generated from the version information as discussed above.

Of course TEST will also insert page breaks whenever it must in order to get
the material to fit on a page (except that breaks can not occur in the middle of
notes or problems). (If you have hired Thomas Mann to write word problems for
you, you can imitate a page break in the middle of a problem by writing the first
part of the problem as a note; include a \pagbreak command in the note and
finish the problem as a problem. [After reading the Extras section, you can even
label your note with \global\notelabel={{\count0 =\probcounter\advance
\count0 by1 \hss\number \count0.\ \ }} if you have not changed how TEST
labels problems. Be sure to kill \notelabel before the next note is produced with
\global\notelabel={}.])

TEST takes the extra space on a page and distributes it evenly amongst the
problems before it sets each page. It does this by inserting a \vfil after the box
containing each problem. None of the extra space is appended to a note. As

6

we will explain in the section on spacing, you can specify the minimum amount
of space after a problem. One way to handle the page breaks is to just put the
minimum space you want after each problem and let TEST put the breaks where
it wants. It is not necessary to have “pb.”’s if you like TEST’s break points.

A common error in both answer and problem permutations is to include the
same answer or problem twice. TEST will warn you that this has happened with

an “Empty

{answer
problem
note

box!” message. In the typeset document the repetition

will result in a blank box corresponding to the location of the second (and any
subsequent) usage.

§2. Answer Sheets.TEST also generates an answer sheet for the test. You should
have a \title {Math 999} and a \date {December 25} command near the start
of your file. This will put the title and date on the copy used for proof–reading
and also puts this title and date on the answer sheet. (A \twolinetitle command
is available if you need two lines: it needs two variables, the first line and then
the second line. There is also a \comment {whatever} command which adds
a comment line just under the date and an \answersheetfootline{whatever}
command which adds the material to the bottom of the page. Most of the answer
sheet is taken up with lines for the students to mark their answers, but we also
include a line for their name, a line for you to record their score, and optional
lines for your name and their section.

The section number line can be suppressed by the \nosection command and
the line for your name can be suppressed by the \noprofessor command. (The
\Professor {Professor Hilbert} command will add the professor line but fills it
in with “Professor Hilbert”.)

For each version of the test, TEST will generate an answer sheet with the
correct answer marked with a black dot. This sheet comes at the end of the test
questions for that version. It is labeled with a version number and lists how many
answers were a, how many were b, etc.

Immediately after the marked answer sheet for version 1 is produced, TEST
also produces an unmarked answer sheet. This unmarked sheet also includes
your footline text, which is suppressed in the marked versions because that space
is used for the answer information. Sometimes, because of the way you have
permuted the problems, the answer sheets for different versions ought to look
different. Whenever this happens, TEST produces a new unmarked answer sheet
immediately after the corresponding marked one. Whenever an unmarked answer
sheet is produced TEST also writes a “UNMARKED ANSWER SHEET” to the
log file.

The answer sheet feature can be suppressed with the \noanswersheet com-
mand. If this command is included in your file, then TEST will not produce any
answer sheets, but it will generate a file which contains the information as to how
the tests were typeset and what the correct answers are. This file is called \jobna-
me.answer :i.e. if the file containing your test is called My Test or My Test.tex,

7

this file will be called My Test.answer. (You did remember no spaces in file
names, didn’t you?) You can process this file if desired to produce your own an-
swer sheets. The format of this file is described in appendix A.1 below. You can
also use the file to produce the standard answer sheets at a later date, using the
\writeanswersheet#1 command.

To do this, create a seperate file with your answer sheet formatting commands
as usual and finish the file with \writeanswersheet \input file name \end (but
NOT \bye). The file “file name” should be the one produced by TEST when it was
typesetting the tests with the \noanswersheet command. (There should still be
no spaces or other weird characters in the file name, but otherwise it can be any
name you like [modulo your machine’s limitations on file names]. Most likely it
will still be “something.answer”.) If you prefer you can modify the file produced
by TEST directly. Add your formatting commands before the original contents
of this file (the material that is in the file when you first open it). Then add
\writeanswersheets just before the original material and an \end just after it.
The command \writeanswersheets will not work unless it is the last command
before the \end (which cannot be replaced with a \bye).

By default, the program puts a line with a “Page n” between the last problem
on page n−1 and the first problem on page n (for n ≥ 2) to help the students avoid
marking the wrong numbered problem. This can be replaced with just a blank line
or suppressed altogether. You can also get it to put “Page 1” just before problem
1 if you wish. These changes are accomplished with \pageannouncements=
{xxxx}, where xxxx can be “none” (type {none} with no spaces) , or “blank”
(again no spaces), or “withfirstpage”, or “usual”. If the entry is “none” then you
get no extra lines at all; if it is “blank” then you get blank lines. If it is “usual”
then you get the effect described above (and this is what you will get with no
\pageannouncements command at all). The “withfirstpage” will add the “Page
1” line. If you use anything else, you will get a message and be returned to the
default.

By default, these page announcements are in 12pt roman, centered in their
column, but you can change this if you wish. The actual text is produced by a
macro, \mypageannouncement, which you may redefine to suit yourself. The
default is \def\mypageannouncement{Page \number\pagecounter}, where
\pagecounter is a variable you may use in your own macro. For example, to
move the announcements to the left hand edge of the column, simply put the
following definition in your file: \def\mypageannouncement{\hbox to\ans-
wersheetlinewidth{Page \number\pagecounter\hfil}}. Recall from below
that \answersheetlinewidth is a variable which holds the width of the column.

It is possible to put the data into two columns. The \twocolumn command
will do this: the format is \twocolumn {b} where b tells the program where to
do the break: if you put in a number for b, then that numbered problem appears
at the top of the second column. If you put in “p.r” for b, r a number, then
the line with “Page r” will appear at the top of the second column. (If you are
suppressing page announcements then the next problem will appear.) If you put

8

in “n.r”, then the first problem or page break after note r will appear at the top
of the second column.

It is also possible to select the style for the entries in the answer sheet as well
as the labels in the main body of the test. We discuss this in the next section.

The answer sheet is composed of three boxes and material at the bottom of
the page. The location of these items on the page can be adjusted. The first
box is the header box which contains the title, date, any comment, the area for
the student’s name, professor, and section number. (This box is actually named
\header and you may use it in your own macros if you wish.) It is set so that
its upper right corner has the coordinates specified by \rightheader and \vert-
header. By default these are 0in. and -.5in. respectively, but can be adjusted by
the user at will with a \global\rightheader={whatever} command. A second
box contains the lines for you to record the student’s score. It can be adjusted
by changing the \righttotals and \verttotals dimensions, and the name of this
box is \totals.

There is another box, the multiple–choice box, which contains the area for
the students to mark their answers. The location of this box can be adjusted by
changing the \rightmultchoice and \vertmultchoice dimensions. The defaults
here are 0in., .8in. but the best way to adjust any of these boxes is with the \global
\advance command. For instance “\global\advance\vertmultchoiceby 1in”
will lower the multiple–choice box by 1in. on the page. The name of this box is
\abcdebox.
Warning: Since the file is read several times, \advance’s should be used cau-
tiously. An \advance like that suggested above should only appear before the
first \note or \problem command or on subsequent answer sheets the multiple–
choice box will migrate steadily down the page.

By default, the material at the bottom of the answer sheet is centered. If you
prefer some other convention, \skipforfootlineofanswersheet can adjust this
for you. For example, \skipforfootlineofanswersheet=0pt will left justify
the material.

The length of a line of multiple choice answers is set by \answersheetlin-
ewidth and can be adjusted by setting it with a \global command or changing
it with a \global\advance command. The space after the problem number and
before the first answer is set with \problemnameskip. In two column mode the
length of a line of answers is roughly half of \answersheetlinewidth and the
two columns are separated by a space of \columnspace. The space between each
line of answers is set with \multiplechoiceskip. The space between the labels(
(a), (b),etc. by default

)
is simply set using \hfil’s between the labels. You

can also write your own problem numbering schemes as described in the Extras
section below.

Finally, if all this is not enough to produce the perfect answer sheet, you may
define your own routines. You may define a new command, \mymarkedans-
wersheet, to produce marked answer sheets and \myunmarkedanswersheet
to produce unmarked answer sheets. TEST will call your commands rather than

9

processing the data as above. Your routines should compose the answer page (or
pages) and \eject them.

There are three commands, \placeheaderbox, \placetotalsbox and \plac-
emultchoicebox which you can use in your macros to get the usual boxes. Hence
\def\mymarkedanswersheet#1{\placeheaderbox\placetotalsbox\placem-
ultchoicebox \vfil\eject} \let\myunmarkedmarkedanswersheet=\mym-
arkedanswersheet is how the usual answer sheets are generated. This relatively
easy access to the output routines for the answer sheets is the reason for no
“everyanswersheet” token list since if you really need one just write your own
\mymarkedanswersheet code. As a further example, note that the commands
\def\mymarkedanswersheet#1{\setbox\header=\hbox{ your header ma-
terial } \box\header\placetotalsbox\placemultchoicebox\vfil\eject} \let
\myunmarkedmarkedanswersheet=\mymarkedanswersheet will produce
an answer sheet with your header material in place of the standard stuff. The
difference between marked and unmarked answers sheets is that for the marked
ones TEST passes the \abcdebox with the answers marked and for the unmarked
ones the \abcdebox is unmarked.

§3. Label Styles.Both in the answer sheet and in the test, we need labels for the
multiple choice answers. By default these are the lower case letters a–e, but they
can be changed to any other scheme the user likes. The \setlabels command will
do this: \setlabels ABCDE will change them to upper–case; \setlabels rghyt
will produce a scheme no one can remember except the computer. You must still
enter answer permutations as through the labels were a–e, but they will print out
in your chosen labels.

Each label has a style (e.g. italics, or roman, or typewriter, etc.). The style
for the labels in the test itself is set with \let\labelstyle =\sl or whatever. (The
default is roman.) The style for the labels in the answer sheet is set with \let
\ansstyle =\sl or whatever. (The default is again roman.) Technically, these
styles are macros, and if you are familiar with TEX fonts and font families, you
can even write your own label styles.

Each label also has a border: to get an (a), the style is \sl and the border
is a pair of parentheses. This can be set with for the test with \let\labelb-
order=\parenthborder, which is the default. For the answer sheet, use \let
\ansborder=\parenthborder, which is also the default. Another choice is \let
\ansborder=\boxborder which places a square box around the label of size
\boxwidth which is dropped a distance of \boxdepth below the baseline. (
\boxwidth and \boxdepth can be adjusted if needed by the usual \global
\advance command.) The user can also create their own border by redefining the
\ansborder and/or \labelborder commands. As an example; \def\labelbord-
er#1{[{#1}} will create [a as a border. A more complicated example is \font
\magcmsy=cmsy10 scaled 1200 \def\labelborder#1{ \hbox to0pt{\textf-
ont2=\magcmsy\hss\bigcirc \textfont2=\tensy\hss}\hbox to0pt{\h-
ss#1\hss}} (where the \font command is a “kludge” to get 14pt cmsy). This
will produce a–e with circles around them:e.g. ©b .

10

§4. Problem Spacing.TEX has a large number of spacing conventions which
TEST has partially disabled to get things to work well. TEST has certain spacing
parameters of its own in order to allow you to get the spacing you want. De-
scriptions of spacing parameters for the answer sheets occur in the Answer Sheet
section above.

The body of a problem has a certain interline spacing. The TEX command \l-
ineskip = 4pt will set this to 4pt. for the problem being set when it was invoked.
This command in a note will set the interline spacing for the note. Without a
\global command, the result is local to the problem or note. You can use this to
open up (or tighten) the spacing between the lines of a problem or note. If you
want the interline spacing for all problems to be 4pt. (but you do not want to
make the change global because you do not like its effect on your notes or your
answers, you can say \everyproblem{\lineskip = 4pt}. (See the description of
\everyproblem and \everynote in the Extras section.)

In the problem a small amount of math–surround often improves the display
of the problem, but it rarely improves the display of the answers, so we do not
want to change \mathsurround globally. (Math–surround is space that TEX
inserts around math mode stuff.) The plain TEX command \mathsurround =-
2pt will set the math–surround to 2pt.’s in the problem with the change being
local to the problem. (\everyproblem can be used to make a change in every
problem.)

Perhaps here is also the place to remark that \everymath has been set to
\displaystyle.

The most common spacing we wish to adjust is to set the minimum space
after a problem. The commands \afterproblemskip and \normalafterprob-
lemskip do this: “\afterproblemskip = 1in” puts a minimum of one inch of
space after the problem in which it is invoked; \normalafterproblemskip = 1in
puts a minimum of one inch of space after every problem beginning with the next
one. (There are also a \normalafternoteskip and an \afternoteskip.)

When there is more than one line of answers for a problem, you can control
the space between lines with the \answerlineskip and \normalanswerlineskip
commands. As usual, the first is local to the problem and the second begins with
the next problem.

The commands \answerskips#1before#2after and \normalanswersk-
ips#1before#2after put some space between the label and the start of the
answer (the dimension #1) and it insures that there is a certain minimum space
after the answer (the dimension #2).
Note: These skips are true TEX skips, but because they are deeply buried, they
behave much like dimensions. An \afternoteskip=1in. will put an inch of space
after the note, but \afternoteskip=0pt plus 1fil will do nothing because the glue
is set long before the box containing the note is put into the main vertical list.

11

§5. Extras.You have four choices of how the pages will be numbered in TEST.
These choices are selected by setting the variable \pagenumberstyle. If this is
0 you get no page numbers at all (this can also be accomplished with \nopage-
numbers). The number 1 is the default and you get a number in the upper left
hand corner, except for the first page, which has no number. The number 3 is the
same except that the first page also has a number. The number 2 will number
all the pages at the bottom with the numbered centered; and the number 4 will
do the same except that the first page has no number. These numbers should be
set with a \global\pagenumberstyle=r, and the requested style will go into
effect at the next \shipout, which, given TEX may be the page containing the
command or, perhaps the previous page.

There is a token, \everyversion, which will be expanded just before be-
ginning to process the text for each version. For example, \everyversion={
\ifodd\version\relax\global\pagenumberstyle=1\else \global\pagenum-
berstyle=4\fi} will alternate the location of the page numbers on the versions.
This example also demonstrates that \version is actually a counter, accessible to
the user, which holds the version number of the version being typeset.

\everyversion is expanded just before the data needed to process the version
is assembled. Hence it should be possible to alter the version number within
\everyversion and have things work out correctly. Here, for example is a scheme
which skips certain versions (1 and 3) and does the rest (\ifversion is discussed
below). The specifics of \killversion come from examining the code for TEST:
roughly, we skip over the code which produces the output for this run and then
ease back into the loop which is working through all the versions: the input for
\killversion does the skip; the \fi is to close off the \if from \ifversion (its usual
\fi is part of the code we skipped); and the \global is to restore the last \global
we skipped from \killversion but that we really want. The code is \def\kill-
version#1\global#2\global{\fi\global} \everyversion ={\ifversion1&3:
\killversion\fi}

There are also \everyproblem and \everynote which are tokens expanded
just before processing each problem or each note. You may change these com-
mands after the test has begun, but then they are buried and so need to be
preceded by \global before they will have any effect. Since \everynote and
\everyproblem are expanded at the start of a note or problem, they must be
defined sometime before you want them. (If \everyproblem is defined in the
text of a problem, it will not take effect until the next problem.)

There is also a command \ifversion#1:#2\fi. For example, if \ifversio-
n2&3&5: \afterproblemskip=1in\fi is placed in the text of a problem, then,
in versions 2, 3 and 5, the \afterproblemskip will be 1in; in all other versions it
will be whatever \normalafterproblemskip is. There is not an “ifnotversion”
command, but if you put \ifversion2&3&5:\else\afterproblemskip=1in\f-
i in your file, this will set \afterproblemskip to 1in except in versions 2, 3
and 5. This command is intended to be used in the body of the test. The
\ifversion command is expanded as it is read, so if you put it before the first

12

\problem or \note command it is only read once and hence will have little
effect. If you need it executed before the first \note or \problem, just put it in
\everyversion.

Finally there is a token list \everyanswerbox. This token is expanded
just before the box containing the answers is attached to the box containing the
problem. The default for this token list is \everyanswerbox ={\ifnum\lastv-
ersion < 1\relax\vskip 4pt \else \vskip 12pt\fi}. (This routine puts 4pt.’s of
space between the bottom of the problem and the top of the answers in “cramped–
space” runs and 12pt.’s of space otherwise.) The command immediately following
\everyanswerbox is \box followed by the number of the box containing the
answers. You could write a command, \def\afterbox\box#1{ something }
which could process this box: \def\afterbox\box#1{\vskip 12pt \box#1 }
\everyanswerbox ={\afterbox} is equivalent to the usual routine except that
it always puts 12pt.’s of space between the problem and the answers; \def\af-
terbox\box#1{\vskip 12pt \hbox to\hsize{\hskip 1cm \box#1\hss }}
\everyanswerbox ={\afterbox} will shift all the answer boxes 1 cm. to the
right. TEST has also stored the individual boxes with the answers which are still
available to you (see the section on “Answer Typesetting” below).

The numbering of the problems is set by a token list, \problemlabel. By
default, this is \problemlabel={\number\probcounter.\ \ }. These tokens
precede the problem and extend into the left margin (the end of the list is the
beginning of the left margin). There is also a token list, \answerlabel, which
is used to label the answer sheet. The same expansion scheme applies: the right
end of the list is fixed and it extends as needed to the left. The commands \pro-
blemlabel={{ \ifnum\probcounter< 11\relax A:\number\probcounter.
\else B:\count0=\probcounter \advance\count0 by -10\number\coun-
t0.\fi }} will precede problems 1–10 with “A:”; problems 11 on will be numbered
as “B:1.”, B:2.”,etc. If you add \let\answerlabel =\problemlabel then this
style will also be adopted for the answer sheet, but this is up to you.

There is also a token list, \notelabel, which puts a label before each note,
extending into the left margin just like \problemlabel. By default this token list
is empty, but it can be set to anything you want.

Both the plain TEX \headline and \footline token lists are managed by TEST
and so are not available to the user. As indicated in the introduction, we have
supplied \myheadline and \myfootline to replace them. If you define a headline
or a footline token list using \myheadline or \myfootline, your material replaces
TEST’s material and is centered automatically using \hfil’s (so you can left or right
justify using \hfill’s). The command, \myfootline={Footlines\hfill}, will put
“Footlines” at the base of every page, beginning at the left margin. It will also
kill page numbers in styles 2 and 4 since the material in \footline is now yours
and not TEST’s. At least one use for these commands is to produce other page
numbering schemes. At \shipout time, the variable \pageno contains the page
number of the page being shipped out. Hence \myfootline={ \ifodd\version
\number\pageno.\else \number\pageno\fi} \nopagenumbers will produce

13

a scheme in which page numbers are centered at the bottom of the page and have
periods after them in odd numbered versions and no periods after them in the
even versions.

The command \sevenrm is available to produce the roman font at 7pts.
There is a command, \pfreadremark#1, which is a macro designed to let

you put in a remark to yourself or your coauthors while you are preparing the
test. Ideally you should remove these before making a production run, but if you
forget, these remarks do not print in versions with a number other than 0. (It will
send a “YOU STILL HAVE A REMARK IN THE FILE” message to the log file.
The “Problem · · ·” messages that you have noticed in the log file are put out after
the problem is finished, so if your remark is in a problem it is in the problem below
the “YOU STILL HAVE A REMARK IN THE FILE” message.) Be warned that
\pfreadnote is a macro, so your text needs to be inclosed in braces.

There are two commands for producing fractions. The command \frac#1#2
sets a fraction with #1 in the numerator and #2 in the denominator. It is set
with the numerator and denominator in plain TEX’s \textstyle, which is bigger
than the usual default in plain TEX for setting fractions. There is also a \small-
frac#1#2 which also sets a fraction but this time using the standard plain TEX
conventions.

Two commands which are of use to Textures users are the \picture#1by#2-
(#3) and \scaledpicture#1by#2(#3scaled #4) commands. An explanation
of these can be found in the Textures manual, but briefly #3 is the name of a
picture in the Textures “pictures” window, #1 and #2 are the two dimensions
listed in the window of the picture you want. The #4 in the \scaledpicture is a
TEX scale factor (e.g. 500, 1000,1200,etc.) The result of either of these commands
is a picture contained in a box which just encloses it. Hence \raise1in\hbox{
\picture#1by#2(#3)} will raise the picture up an inch.

§6. Answer Typesetting.Normally you should not need to know how TEST
typesets your answers, but occassionally you may want to achieve some special
effect. This section explains how TEST preforms its job and how you may interact
with it.

Each answer is boxed up as it is read. At the end of the problem, TEST locates
the correct permutation to use, adds labels to the answers and puts the resulting
boxes into box registers \bba, \bbb, \bbc, \bbd and \bbe. The answer with
label (a) is in box \bba, etc. The answers, but without the labels, are stored in
box registers \ba, \bb,\bc, \bd and \be. There is a variable, \correctcounter,
which hold the position of the correct answer (0 = (a), 1 = (b), etc.).

Then TEST determines how to place these boxes. There are 7 arrangements
which TEST may use. An imposed requirement is that the number of answers from
one line of answers to the next is never increasing.

We may be able to place all our answers on one line: the command which
does this is called \fivezero. Or we could place four on one line and one on
the next if needed: this command is called \fourone. (\fourone has a built in
predilection for setting the answers as three on one line and two on the next if

14

this is also possible. There is a TEX \if command, \iftruefourone which does
this. The default is \truefouronefalse but if you say \global\truefouronetr-
ue, thereafter, TEST will set all your “four-one”’s as four answers on the first line
and one on the second.)

There is a command, \threetwo, which sets three answers on one line and
tries to set two on the next: if called when this is not possible, it defaults to
\threeone, which sets three answers on one line and one on each of the next two
lines.

The is a TEX \if command, \ifthreetwoB, available to the user. There
are two ways we could get three answers on line one and two answers on line
two. By preference, TEST will try to begin the second answer, (f), on line two
under the second answer, (b), on line one (case A): if it can not do this because
answer (d) is too long, TEST will try to begin answer (f) under the third answer,
(c), on line one (case B). Some people do not like this second arrangement and
would prefer that the answers appeared on three lines with one answer each on
the last two lines rather than case B of “three-two”. The command \three-
twoBfalse will do this. By default, we have \threetwoBtrue, and with a
\global command this can be turned on and off during the run to force some
answers as in “three-two-case B” and others to set as “three-one-one”.

There are commands, \twotwo, which tries to set two lines of two answers
each and a third line of one, which defaults to \twoone when it can not do this:
\twoone sets two answers on line one and one answer per line afterwards.

Finally, \onezero just sets each answer on a line by itself.
These routines are semi–available to the user. First note that it is the users

responsibility to see to it that the requisite number of answers will fit on the
first line (else you will get an “overfull hbox” message). After the first line,
the routines manage the remaining ones. By saying \global\everyanswerb-
ox ={\vskip 14pt\answerbox } \gdef\answerbox\box#1{\threeone\bo-
x#1}, all problems after this command will have their answers set in “three-
one-one” format. This will surely not work well in general, but by changing
\everyanswerbox before a problem ends and then restoring it to its old value
in the next problem, one can force the answers of a particular problem to be set
in “three-one-one” style when TEST might naturally set it in “three-two” style.
To facilitate such changes, we have defined a \normaleveryanswerbox which
is the same as default \everyanswerbox: hence \global\everyanswerbox=
\normaleveryanswerbox will restore \everyanswerbox to its default value
(unless the user has also redefined \normaleveryanswerbox).

There is a routine, \handbreak#1, which will set a problem: if you wish
every version of a particular problem set as, say \threetwo, just put \handbreak
\threetwo into that problem and it will happen. If you only want this for certain
versions, put in, for example, \handbreak{\ifversion 1&3:\relax\threetwo
\fi}. In general, the variable, #1 from above, should be one of the line setting
routines discussed above.

§A.1 Answer File format.
15

If there is a \noanswersheet command, TEST will generate a data file called
\jobname.answer.

The first entry in this file is Version, followed immediately by a number,
usually 1 and a \par. Then comes a list of entries, seperated by \par’s, until
either the file ends or we encounter another Version followed immediately by the
next version number.

These additional entries are of one of five types.
1. As a note is put into the main vertical list, it adds “n.x” to this file where x

is the number of this note in the version of the test being printed.
2. As a problem with no multiple–choice answers is put into the main vertical

list, it adds a “P.x” line to the file, where x is the number of this problem in
the version of the test being printed.

3. As a multiple–choice problem is put into the main vertical list, it adds an
“x.y.z” to the file, where x is the problem number in the test being printed;
y is a number in the range 0 to 4 indicating which answer is correct (0 is (a))
and z is the number of multiple choice answers for this problem.

4. A true-false problem puts a “t.x” line into the file, where x is 0 if TRUE is
the correct answer and 1 if FALSE is the correct answer.

5. The fifth type of entry is generated using TEX’s \mark mechanism. When
an item of type 1–4 is added to the file, TEST also emits a \mark with the
same data. Then, as a page is shipped out, TEX remembers the entry for
the last mark data on the page, and TEST adds an “M.” followed by the last
mark data to the file. (If the last item on the page is note x for example,
there is an “n.x” in the file and the file will also have an “M.n.x” in it.) As
usual with TEX, the page break is often not found until we have put an item
or two too many into the main vertical list, so the “M.n.x” of our example
probably comes several entries after the “n.x” to which it corresponds.

The mark data is not emitted until after the \everyanswerbox is expanded, so
your \everyanswerbox routine can manage the mark data for items of type 3
and 4 as well.

If TEST is making the answer sheets, this same data is generated, it just isn’t
saved. It is important that, if TEST is to generate the answer sheets, the mark
data be correct and be what TEST expects. (If you are going to process the
\jobname.answer file, you can arrange the mark data to suit yourself, at least
for items of type 3 and 4.) Most uses of \everyanswerbox do not alter the
problem number or the number of answers or even which answer is correct, so
usually the mark data is correct without any work on your part. If you need it,
the problem number is \probcounter, the correct answer is \correctcounter
and the number of answers is \numberps.

§A.2 Some technical data. The routines and variables listed above (and in the
list below) represent the commands and variables to which the user has access.
THIS IS NOT YET CORRECT (with some effort you can still clobber variables
you shouldn’t)! There are however a great many other routines and variables in
TEST. They have been protected from the casual user by including a ‘?’ as part

16

of their name after first declaring ‘?’ to have category code 11 at the start of
TEST. Of course we redeclare the category code of ‘?’ to be 12 at the end of
the macros for TEST, so, under normal circumstances, the user may write and use
other macros freely with TEST.

TEST also plays games with the category code of the letter w. TEST needs to
read the file once for each version of the test desired and the material before the
first note or problem should not be read twice just in case the user has defined
some macro which will not do well when read a second time. It is easy enough
to skip over material at the start of the test the second time the file is \inpu-
t UNLESS some of it has been declared \outer. The most common situation
in which this occurs in TEX is with the various \new commands. Hence, by
changing the category code of w whenever we start to re–read the file, TEST
glides harmlessly past some \ne commands until it hits a \note or \proble-
m command, at which point the category code of w is restored. We have also
redeclared the plain TEX alignment command, \+ (which is \outer), to be
\tabalign. Futhermore, TEST will also pass harmlessly over your \outer macros
if they contain a w, but otherwise it will halt with an error message, your macro
will be turned into mush, and the whole project should probably be abandoned.
(If you have some macros which should be read every time a new version starts
up, you can include them in the \everyversion token list.)

The advantages of reading the file each time far outweigh these minor annoy-
ances. It means that we need only a minimum amount of storage so TEST rarely
has memory problems. The worst case from the point of view of memory usage
occurs when we TEX a version in which we permute the problems. For this case
we have adopted a compromise strategy: TEST reads the file only once, but only
stores those problems and notes that it is going to need to assemble the test. Fur-
thermore, TEST only reads the file until it has found all the needed material, after
which, it stops reading. TEST could have TEX’ed much larger tests by reading the
file to find a needed item and then reading it again to find the next one, but this
seemed to be sufficiently slow that it was not implemented. (It also seems rare
that one wants a hundred question test with the problems permuted, and if you
do then perhaps TEST is not the tool to generate the intitial file. Once you have
the file with the problems and notes in the order you wish, TEST will TEX the file,
essentially regardless of its size. Of course you had better shut off the answer sheet
macros and produce the sheets yourself or you will overflow TEX’s memory.) A
practical limit to the size test TEST will accommodate is about 50 problems. (After
this, the answer sheet macors cannot fit the stuff on one page so you will certainly
have to make your own answer sheets. If you select more than 50 problems, mem-
ory begins to get a little tight: the author has TEX’ed 50 a problem test with
\tracingstats=2 and observed about 6000 words of memory were still untouched.
With 55 problems, we had 499 word of memory still untouched. Your statistics
will vary depending on how complicated your problems and answers are.)

17

Pseudo–Index
\abcdebox §2
\afternoteskip §4
\afterproblemskip §4
\ansborder §3
\ansstyle §3
\answerlabel §5
\answerlineskip §4
\answersheetfootline#1 §2
\answersheetlinewidth §2
\answerskips#1before#2after§4

\ba–\be §6
\bba–\bbe §6
\boxborder#1 §3
\boxdepth §3
\boxwidth §3

\columnspace§2
\comment#1 §2
\correct Introduction
\correctcounter §6

\date#1§2

\end. Introduction
\everymath §4
\everynote §5
\everyproblem §5
\everyversion§5

\firstversion §1
\fivezero §6
\fourone §6
\frac#1#2 §5

\header §2

\ifthreetwoB §6
\ifturefourone. §6
\ifversion#1:#2 §5

\labelborder §3
\labelstyle §3
\lastversion §1

\multiplechoiceskip §2
\myfootline §5
\myheadline §5
\mymarkedanswersheet §2

Pseudo–Index
\mypageannouncement#1 §3
\myunmarkedanswersheet §2

\noanswersheet §2
\noprofessor §2
\normalafternoteskip §4
\normalafterproblemskip §4
\normalanswerlineskip §4
\normalanswerskips#1before#2after §4
\nosection §2
\note Introduction
\noteline §5
\notelineskip §4
\numberps §6

\onezero §6

\pageannouncements=#1 §2
\pagebreak §1
\pagecounter §2
\pageno §5
\parenthborder#1 §3
\perm#1: §1
\pfreadnote#1 §5
\placeheaderbox §2
\placemultchoicebox §2
\placetotlasbox§2
\picture#1by#2(#3) §5
\probcounter §5
\problemIntroduction
\problemlabel §5
\problemnameskip §2
\Professor#1 §2

\scaledpicture#1by#2(#3scaled#4) §5
\setglobalperms#1 §1
\setlabels#1#2#3#4#5§3
\setpermlist#1
\setproblempermutations#1
\sevenrm §5
\skipforfootlineofanswersheet §2
\smallfrac#1#2§5

\Tf Introduction
\tF Introduction
\threeone §6
\threetwo §6

Pseudo–Index
\title#1 §2
\totals §2
\twocolumn#1 §2
\twolinetitle#1#2 §2
\twoone §6
\twotwo§6

\version §5

\writeanswersheet#1§2
\wrong. Introduction

