Math 336: Real Analysis II Spring Semester 2000 Final Exam Wednesday, May 10

This Examination contains 8 problems on 11 sheets of paper including the front cover. Do all your work on the paper provided.

Question	Possible	Actual
1	30	
2	50	
3	25	
4	25	
5	15	
6	15	
7	15	
8	15	
Total	175	

Scores

GOOD LUCK

...and best wishes for life after real analysis.

- 1. Do all of the following four (10 points each).
 - (a) State the definition of uniform convergence $\{a_n\}_{n=1}^{\infty}$.

(b) State the contraction mapping principle

(c) State the definition of convergence for an infinite series.

(d) State the inverse function theorem

- 2. One of the two statements in each of the following pairs is false. Identify the false statement and give a counterexample. In lieu of a precise counterexample, you can get at least partial credit in some cases by drawing an appropriate picture. Do five of six parts. (10 points each)
 - (a) If $f_n : [0,1] \to \mathbf{R}$ converges uniformly to $f : [0,1] \to \mathbf{R}$, then f_n converges to f pointwise.
 - If $f_n: [0,1] \to \mathbf{R}$ converges pointwise to $f: [0,1] \to \mathbf{R}$, then f_n converges to f uniformly.

(b) • If {a_n} is a sequence converging to zero, then ∑_{n=0}[∞] a_n converges.
• If ∑_{n=0}[∞] a_n converges, then {a_n} is a sequence converging to zero.

(c) • If all the partial derivatives of f : Rⁿ → R^m exist at 0, then f is differentiable at 0.
• If f : Rⁿ → R^m is differentiable at 0, then all the partial derivatives of f exist at 0.

- (d) If $f : \mathbf{R}^n \to \mathbf{R}^n$ is a C^1 function with a local inverse g defined near $f(\mathbf{x})$, then g is C^1 and $Dg_{f(\mathbf{x})} = (Df_{\mathbf{x}})^{-1}$
 - If $f : \mathbf{R}^n \to \mathbf{R}^n$ is a C^1 function and $Df_{\mathbf{x}}$ is invertible, then there is a local inverse g for f defined near $f(\mathbf{x})$.

(e) Let $\sum_{j=0}^{\infty} c_j x^j$ be a power series.

- If the the series converges at x = R > 0, then it converges at x = -R.
- If the series converges at x = R > 0, then it converges uniformly on (-r, r) for all r < R.

- (f) Let $f_n : \mathbf{R} \to \mathbf{R}$ be C^1 functions such that $f_n(0) = 0$ for every $n \in \mathbf{N}$.
 - If f_n converges uniformly on **R**, then f'_n converges uniformly on **R**.
 - If f'_n converges uniformly to g on \mathbf{R} , then f_n converges uniformly on \mathbf{R} .

3. Let $f : \mathbf{R}^2 \to \mathbf{R}^2$ be given by $f(x, y) = (e^x - e^y, \ln(x + y))$. Note that $f(1, 1) = (0, \log 2)$. (a) Compute the Jacobian matrix for f (5 points).

(b) Explain why there exists a local inverse g for f defined near $(0, \log 2)$. (5 points)

(c) Give the linear approximation at $(0, \log 2)$ for g. (10 points)

(d) Using (1, 1) as a first guess, find a better guess at a point (x, y) such that $f(x, y) = (.1, \log 2)$ Do not simplify your arithmetic! (5 points).

4. Consider the intial value problem

$$y'(t) = (t + y(t))^2, \qquad y(0) = 2$$

Let r > 0 be given and E be the set of all continous functions $y: (-r, r) \to [0, 4]$.

(a) As in the proof of the existence and uniqueness theorem for solutions to first order ordinary differential equations, write down a a function $T: E \to E$ whose fixed point will be a solution of the initial value problem. (8 points)

(b) Given a first guess of y(t) = 2, use your T to find a better guess at a solution of the initial value problem. (8 points)

(c) Show that if r (see statement of problem) is chosen small enough, then T will be a contraction mapping (distance between functions is measured by the sup norm). It is important here that functions in E are bounded above and below by 4 and -4, respectively. (9 points)

Do 3 out of the following four problems. (15 points each)

5. Let $f, g: \mathbf{R}^n \to \mathbf{R}^m$ be differentiable at **0**. Let $a, b \in \mathbf{R}$ be constants and $h(\mathbf{x}) = af(\mathbf{x}) + bg(\mathbf{x})$. Show that h is differentiable at **0**. 6. Show that if $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ converge absolutely, and $c_n = \max\{a_n, b_n\}$ for every n, then $\sum_{n=0}^{\infty} c_n$ converges.

7. Suppose that a < b are numbers and $f_j : [a, b] \to \mathbf{R}$ are continuous functions converging uniformly to $f : [a, b] \to \mathbf{R}$. For each $x \in [a, b]$ and each $j \in \mathbf{N}$, let

$$F_j(x) = \int_a^x f_j(t) \, dt.$$

Show that $F_j(x)$ converges uniformly to

$$F(x) = \int_{a}^{x} f(t) \, dt.$$

8. Suppose that $f: \mathbf{R} \to \mathbf{R}$ is an infinitely differentiable function whose derivatives satisfy

$$\left|\frac{d^n f}{dx^n}\right| \le n!$$

for every $n \in \mathbf{N}$ and every $x \in \mathbf{R}$. Let $\sum_{j=0}^{\infty} a_j x^j$ be the Taylor series centered at 0 for f. Give an interval (-r, r) (i.e. find r) on which this Taylor series converges to f and prove that your answer is correct.