Homework 3 Math 336, Winter '00 Due Friday, February 11

From the textbook:

- Page 202: 1, 6
- Page 209: 4abc (give a counterexample if the space is not complete),

Other Problems:

A. Consider the set \mathcal{M} of continuous functions $f:[0,1] \to \mathbf{R}$ with the metric

$$\rho(f,g) = ||f - g||_1 = \int_0^1 |f(x) - g(x)| \, dx$$

is not complete. Give an example of a sequence $\{f_n\}_{n=0}^{\infty} \subset \mathcal{M}$ that converges in this metric but not in the metric $||f - g||_{\infty}$. (Hint: find a sequence that converges in this metric to a discontinuous function)

B. Two metrics ρ_1, ρ_2 on a set \mathcal{M} are called *comparable* or (in the book's terminology) uniformly equivalent if there exist constants $c_1, c_2 > 0$ such that

$$c_1\rho_1(x,y) < \rho_2(x,y) < c_2\rho_1(x,y)$$

for every $x, y \in \mathcal{M}$.

(i): Show that if ρ₁, ρ₂ are comparable metrics on *M*, then a sequence {a_n}[∞]_{n=1} converges with respect to the metric ρ₁ if and only if it converges with respect to the metric ρ₂.
(ii): Let ρ₁, ρ_{max}, ρ₂ be the metrics described in the textbook for **R**ⁿ. Show that a sequence converges with respect to one of these metrics if and only if it converges with respect to all of them. (Hint: it's easier to compare the squares of ρ₁, ρ₂, ρ_{max})

than it is to compare the metrics themselves.)

(iii): Show that a sequence $\{\mathbf{x}_j\}_{j=1}^{\infty} \subset \mathbf{R}^n$ converges in the Euclidean metric if and only if it converges "coordinate-wise"—i.e. when we write $\mathbf{x}_j = (x_{j,1}, \ldots x_{j,n})$ out in terms of its coordinates, then for each k the sequence $\{x_{j,k}\}_{j=1}^{\infty} \subset \mathbf{R}$ converges.