Solutions for Homework 1

3. Given $\epsilon > 0$, let $\epsilon' = \epsilon/2$. Since $f_n \to f$ uniformly on E, there exists $N_1 \in \mathbf{N}$ such that $n \ge N_1$ implies that $|f_n(x) - f(x)| < \epsilon'$ for all $x \in E$. Likewise, there exists $N_2 \in \mathbf{N}$ such that $n \ge N_2$ implies that $|g_n(x) - g(x)| \le \epsilon'$ for all $x \in E$. Hence, if $N = \max\{N_1, N_2\}$ and $n \ge N$, we have

$$|(f_n(x) + g_n(x)) - (f(x) + g(x))| \leq |f_n(x) - f(x)| + |g_n(x) - g(x)|$$
(1)

$$< \epsilon' + \epsilon' = \epsilon.$$
 (2)

This proves that $f_n + g_n$ converges uniformly to f + g on E.

5. Let $[a, b] \subset \mathbf{R}$ be a finite interval, and let $M = \max\{|a|, |b|\}$. I claim that $f_n(x)$ converges uniformly to $f(x) = x^2$ on [a, b]. To see this, let $\epsilon > 0$ be given, and choose $N \in \mathbf{N}$ larger than $(2M + 1)/\epsilon$. Then if $n \ge N$ we have

$$|f_n(x) - f(x)| = |(x - 1/n)^2 - x^2|$$
(3)

$$= \left| \frac{2x - 1/n}{n} \right| \tag{4}$$

$$\leq \frac{1}{n}(2|x|+1) \tag{5}$$

$$\leq \frac{2M+1}{N} < \epsilon. \tag{6}$$

for all $x \in [a, b]$. Hence f_n converges uniformly to f on [a, b].

6. Given $\epsilon > 0$, choose $N \in \mathbf{N}$ larger than $1/\epsilon$. Note that by the Mean Value Theorem

$$\frac{\sin(x+1/n) - \sin(x)}{1/n} = \cos(c)$$

for some c between x and x + 1/n. Therefore, if $n \ge N$, we have

$$|\sin(x+1/n) - \sin(x)| = \frac{|\cos c|}{n} \le \frac{1}{n} \le \frac{1}{N} < \epsilon.$$

Hence $\sin(x+1/n)$ converges uniformly to $\sin x$ on **R**.

7. I claim that $f_n(x)$ converges pointwise to 0 on [0, 1]. To see this, note that for any given $x \in (0, 1]$

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{1}{n} \frac{x}{(x^2 + 1/n^2)} = 0 \cdot \frac{1}{x} = 0.$$

Also, $\lim_{n\to\infty} f_n(0) = \lim_{n\to\infty} 0 = 0$. This proves my claim for all $x \in [0,1]$.

To see that f_n does not converge uniformly, I claim that if we take $\epsilon = 1/2$, then no matter how large *n* is, there will always be some *x* for which $|f_n(x) - 0| \ge \epsilon$. In fact, if we take x = 1/n, then $|f_n(x) - 0| = n/2 \ge 1/2$ for all $n \in \mathbb{N}$. (Incidentally, I found x = 1/n by looking for critical points of f_n . This is actually the point at which f_n achieves its maximum value.)

13. If $-1 < f_n(x) \le 1$ for all $x \in [0,1]$, then f_n will converge pointwise to a function $g: [0,1] \to \mathbf{R}$ such that g(x) = 0 if -1 < f(x) < 1 and g(x) = 1 if f(x) = 1.

If $|f_n(x)| < 1$ for all $x \in [0, 1]$, then $f_n(x)$ will converge uniformly to zero. To see that this is true, let $\epsilon > 0$ be given. Since f is continuous on [0, 1], so is |f(x)|. Hence, there exists a number $c \in [0, 1]$ such that $|f(x)| \leq |f(c)|$ for all $x \in [0, 1]$. If f(c) = 0, there is nothing to

prove, since $f_n(x)$ will then be zero for all x and all n. Otherwise, choose $N \in \mathbb{N}$ larger than $\frac{\log \epsilon}{\log |f(c)|}$. If $n \geq N$, we have

$$|f_n(x) - 0| \le |f(c)|^n < |f(c)|^{\frac{\log \epsilon}{\log |f(c)|}} = \epsilon$$

Hence $f_n(x)$ converges uniformly to zero as claimed.