
Solutions for Homework 1

3. Given ε > 0, let ε′ = ε/2. Since fn → f uniformly on E, there exists N1 ∈ N such that
n ≥ N1 implies that |fn(x) − f(x)| < ε′ for all x ∈ E. Likewise, there exists N2 ∈ N such
that n ≥ N2 implies that |gn(x)− g(x)| ≤ ε′ for all x ∈ E. Hence, if N = max{N1, N2} and
n ≥ N , we have

|(fn(x) + gn(x))− (f(x) + g(x))| ≤ |fn(x)− f(x)|+ |gn(x)− g(x)| (1)

< ε′ + ε′ = ε. (2)

This proves that fn + gn converges uniformly to f + g on E.

5. Let [a, b] ⊂ R be a finite interval, and let M = max{|a|, |b|}. I claim that fn(x) converges
uniformly to f(x) = x2 on [a, b]. To see this, let ε > 0 be given, and choose N ∈ N larger
than (2M + 1)/ε. Then if n ≥ N we have

|fn(x)− f(x)| = |(x− 1/n)2 − x2| (3)

=

∣∣∣∣2x− 1/n

n

∣∣∣∣ (4)

≤ 1

n
(2|x|+ 1) (5)

≤ 2M + 1

N
< ε. (6)

for all x ∈ [a, b]. Hence fn converges uniformly to f on [a, b].

6. Given ε > 0, choose N ∈ N larger than 1/ε. Note that by the Mean Value Theorem

sin(x + 1/n)− sin(x)

1/n
= cos(c)

for some c between x and x + 1/n. Therefore, if n ≥ N , we have

| sin(x + 1/n)− sin(x)| = | cos c|
n

≤ 1

n
≤ 1

N
< ε.

Hence sin(x + 1/n) converges uniformly to sin x on R.

7. I claim that fn(x) converges pointwise to 0 on [0, 1]. To see this, note that for any given
x ∈ (0, 1]

lim
n→∞

fn(x) = lim
n→∞

1

n

x

(x2 + 1/n2)
= 0 · 1

x
= 0.

Also, limn→∞ fn(0) = limn→∞ 0 = 0. This proves my claim for all x ∈ [0, 1].
To see that fn does not converge uniformly, I claim that if we take ε = 1/2, then no matter

how large n is, there will always be some x for which |fn(x) − 0| ≥ ε. In fact, if we take
x = 1/n, then |fn(x) − 0| = n/2 ≥ 1/2 for all n ∈ N. (Incidentally, I found x = 1/n by
looking for critical points of fn. This is actually the point at which fn achieves its maximum
value.)

13. If −1 < fn(x) ≤ 1 for all x ∈ [0, 1], then fn will converge pointwise to a function
g : [0, 1] → R such that g(x) = 0 if −1 < f(x) < 1 and g(x) = 1 if f(x) = 1.

If |fn(x)| < 1 for all x ∈ [0, 1], then fn(x) will converge uniformly to zero. To see that this
is true, let ε > 0 be given. Since f is continuous on [0, 1], so is |f(x)|. Hence, there exists a
number c ∈ [0, 1] such that |f(x)| ≤ |f(c)| for all x ∈ [0, 1]. If f(c) = 0, there is nothing to



prove, since fn(x) will then be zero for all x and all n. Otherwise, choose N ∈ N larger than
log ε

log |f(c)| . If n ≥ N , we have

|fn(x)− 0| ≤ |f(c)|n < |f(c)|
log ε

log |f(c)| = ε

Hence fn(x) converges uniformly to zero as claimed.


